Quantitative separation of nucleotides on mercurated dextran. 1975

D W Gruenwedel, and M G Heskett, and J E Lammert

Dextran gels of varying porosites (Sephadex G series) were chemically modified so as to contain covalently bound monofunctional mercury. Mercurated Sephadex of the porosity G-25 was then used to fractionate mixtures of mono- and dinucleotides into the constituent components. Separation is based on the affinity of the nitrogen binding sites of the purine and pyrimidine derivatives for organomercurial Hg+. Thus, a mixture composed of the four mononucleotides Cyd-5'-P, Ado-3'-P, Guo-2'(3')-P, dThd-5'-P and of the four dinucleotides Cyd-P-Cyd, Ado-P-Ado, Guo-P-Urd, and Urd-P-Urd could be separated into eight well-resolved fractions by using a combination Tris-bicarbonate/carbonate buffer system of increasing pH as an eluent. Complete separation was also achieved when a mixture of Ado 3:5'-P, Ado 5'-P, Ado-5'-PP, and Ado-5'-PPP was fractionated on mercurated Sephadex G-25. Again, Tris-bicarbonate/carbonate buffer served as an eluent. Lastly, fractionation can also be performed at a constant pH by offering other suitable ligands, for instance Cl-, that will compete with nucleotides for monofunctional Hg+. The fractionation behavior of mercurated Sephadex G-25 can be fully understood on the basis of the complexing properties of monofunctional Hg+. This has been shown by calculating the net retention volume ratios of several nucleotides with the help of the known interaction parameters of corresponding nucleosides with CH3 HgOH and by comparing the predicted ratios with the experimentally measured ones. Finally, the acid-base properties of mercurated Sephadex G-25 as well as its affinity for chloride and iodide ions have been determined. The data agree quite well with those known for CH3 HgOH.

UI MeSH Term Description Entries
D008628 Mercury A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
D008767 Methylmercury Compounds Organic compounds in which mercury is attached to a methyl group. Methyl Mercury Compounds,Compounds, Methyl Mercury,Compounds, Methylmercury,Mercury Compounds, Methyl
D009712 Nucleotides, Cyclic Cyclic Nucleotide,Cyclic Nucleotides,Nucleotide, Cyclic
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003597 Cytosine Nucleotides A group of pyrimidine NUCLEOTIDES which contain CYTOSINE. Cytidine Phosphates,Nucleotides, Cytosine,Phosphates, Cytidine
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

D W Gruenwedel, and M G Heskett, and J E Lammert
May 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
D W Gruenwedel, and M G Heskett, and J E Lammert
September 1971, Proceedings of the National Academy of Sciences of the United States of America,
D W Gruenwedel, and M G Heskett, and J E Lammert
October 1966, Bollettino della Societa italiana di biologia sperimentale,
D W Gruenwedel, and M G Heskett, and J E Lammert
January 1982, Ukrainskii biokhimicheskii zhurnal (1978),
D W Gruenwedel, and M G Heskett, and J E Lammert
July 1948, Archives internationales de pharmacodynamie et de therapie,
D W Gruenwedel, and M G Heskett, and J E Lammert
October 1978, Nucleic acids research,
D W Gruenwedel, and M G Heskett, and J E Lammert
May 1976, Analytical biochemistry,
D W Gruenwedel, and M G Heskett, and J E Lammert
June 1978, Nucleic acids research,
D W Gruenwedel, and M G Heskett, and J E Lammert
October 1969, Analytical biochemistry,
D W Gruenwedel, and M G Heskett, and J E Lammert
January 1981, Journal of virology,
Copied contents to your clipboard!