Mutational analysis of quinolone resistance protein QnrB1. 2013

George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
Lahey Hospital and Medical Center, Burlington, Massachusetts, USA.

Alanine substitutions and selected deletions have been used to localize amino acids in QnrB essential for its protective activity. Essential amino acids are found at positions i and i(-2) in the pentapeptide repeat module and in the larger of two loops, where deletion of only a single amino acid compromises activity. Deletion of 10 amino acids at the N terminus is tolerated, but removal of 3 amino acids in the C-terminal dimerization unit destroys activity.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D015363 Quinolones A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID. Ketoquinoline,Ketoquinolines,Oxoquinoline,Oxoquinolines,Quinolinone,Quinolinones,Quinolone
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures
D055503 Protein Multimerization The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein
D019943 Amino Acid Substitution The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties. Amino Acid Substitutions,Substitution, Amino Acid,Substitutions, Amino Acid
D020033 Protein Isoforms Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING. Isoform,Isoforms,Protein Isoform,Protein Splice Variant,Splice Variants, Protein,Protein Splice Variants,Isoform, Protein,Isoforms, Protein,Splice Variant, Protein,Variant, Protein Splice,Variants, Protein Splice

Related Publications

George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
August 1984, European journal of clinical microbiology,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
January 2016, Antimicrobial agents and chemotherapy,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
January 2019, PloS one,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
January 2014, Enfermedades infecciosas y microbiologia clinica,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
June 2021, Antimicrobial agents and chemotherapy,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
January 1986, Scandinavian journal of infectious diseases. Supplementum,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
March 2019, International journal of antimicrobial agents,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
June 2009, The Journal of antimicrobial chemotherapy,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
August 2002, Archives of biochemistry and biophysics,
George A Jacoby, and Marian A Corcoran, and Debra M Mills, and Caitlin M Griffin, and David C Hooper
October 2010, BMC structural biology,
Copied contents to your clipboard!