Research resource: progesterone receptor targetome underlying mammary gland branching morphogenesis. 2013

Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030. orlac@bcm.edu.

Progesterone (P4)-activated progesterone receptors (PRs) play an essential role in driving pregnancy-associated mammary ductal side-branching morphogenesis and alveologenesis. However, the global cistromic and transcriptome responses that are required to elicit P4-dependent branching morphogenesis have not been elucidated. By combining chromatin immunoprecipitation followed by deep sequencing to identify genome-wide PR-binding sites in PR-positive luminal epithelial cells with global gene expression signatures acutely regulated by PRs in the mammary gland, we have identified a mammary epithelial PR targetome associated with active P4-dependent branching morphogenesis in vivo. We demonstrate that P4-induced side-branching is initiated by epithelial cell rearrangement into a multilayered epithelium that sprouts laterally from quiescent ducts via a mechanism requiring P4-dependent activation of Rac-GTPase signaling. We identify effectors of Rac-GTPases as direct transcriptional targets of PRs, and we demonstrate that disruption of the P4-activated Rac-GTPase signaling axis is sufficient to eliminate P4-dependent side-branching. Our data reveal that the molecular mediators of P4-dependent ductal side-branching overlap with those implicated in breast cancer.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011980 Receptors, Progesterone Specific proteins found in or on cells of progesterone target tissues that specifically combine with progesterone. The cytosol progesterone-receptor complex then associates with the nucleic acids to initiate protein synthesis. There are two kinds of progesterone receptors, A and B. Both are induced by estrogen and have short half-lives. Progesterone Receptors,Progestin Receptor,Progestin Receptors,Receptor, Progesterone,Receptors, Progestin,Progesterone Receptor,Receptor, Progestin
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
May 2009, Molecular biology of the cell,
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
September 2009, Developmental biology,
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
January 1999, Journal of mammary gland biology and neoplasia,
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
November 2007, Oncogene,
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
January 2017, Development (Cambridge, England),
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
April 2010, Current biology : CB,
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
August 2003, Proceedings of the National Academy of Sciences of the United States of America,
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
July 2011, Development (Cambridge, England),
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
January 2022, Methods in molecular biology (Clifton, N.J.),
Ashlee R Lain, and Chad J Creighton, and Orla M Conneely
April 2000, Genes & development,
Copied contents to your clipboard!