Deacylation of structurally diverse lipopolysaccharides by human acyloxyacyl hydrolase. 1990

A L Erwin, and R S Munford
Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-8859.

Acyloxyacyl hydrolase, a leukocyte enzyme previously has been shown to catalyze the hydrolysis of secondary (acyloxyacyl-linked) fatty acyl chains from the nonreducing glucosamine of the lipid A region of rough Salmonella typhimurium lipopolysaccharide (LPS). We describe here the activity of this enzyme toward smooth S. typhimurium LPS and LPS from Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, Neisseria meningitidis, and Neisseria gonorrhoeae. Acyloxyacyl hydrolase released the secondary acyl chains from all of these lipopolysaccharides, regardless of the location of the acyloxyacyl linkage on the diglucosamine backbone or the structure of the acyl chains. The two acyloxyacyl linkages present in each LPS molecule apparently were hydrolyzed separately, so that free fatty acids released from the different sites accumulated at different rates. The purified enzyme also removed greater than 90% of the secondary acyl chains in each LPS, indicating that the enzyme acts not only on intact LPS but also on LPS molecules that have only one secondary acyl chain. The enzyme did not release the glucosamine-linked 3-hydroxyacyl chains. The specificity and versatility of the enzyme for cleaving acyloxyacyl linkages suggest that it may be a useful reagent for studying the structure and bioactivities of lipopolysaccharides with diverse carbohydrate and lipid A structures.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008050 Lipid A Lipid A is the biologically active component of lipopolysaccharides. It shows strong endotoxic activity and exhibits immunogenic properties.
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

A L Erwin, and R S Munford
April 2020, American journal of physiology. Renal physiology,
A L Erwin, and R S Munford
March 2018, American journal of physiology. Regulatory, integrative and comparative physiology,
A L Erwin, and R S Munford
January 2022, PloS one,
A L Erwin, and R S Munford
November 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!