Z-DNA formation in the rat growth hormone gene promoter region. 1990

M J Thomas, and T M Freeland, and J S Strobl
Department of Pharmacology and Toxicology, West Virginia University Health Sciences Center, Morgantown.

The complete DNA sequence of the 1.7 kilobase pairs (kbp) 5' of the rat growth hormone gene (rGH) has been determined and analyzed for Z-DNA-forming potential. Regions of alternating purine-pyrimidine (APP) sequences located between -1047 and -986 [(GT)31], between -445 and -433 bp, and between -426 and -403 bp relative to the rGH RNA transcription initiation site were identified and shown to form Z-DNA in negatively supercoiled plasmids by two-dimensional gel electrophoresis. Free-energy calculations indicated that Z-DNA forms most readily in the proximal Z-DNA regions. Diethyl pyrocarbonate footprinting of physiologically supercoiled plasmid DNA confirmed the presence of Z-DNA from -444 to -404 bp spanning the two most proximal APP sequences and a short non-APP sequence in between. DNA sequence analysis also predicted a region of DNA curvature near this proximal Z-DNA region. Formation of Z-DNA in the distal Z-DNA region consisting of a (GT)31 repeat was constrained at physiological plasmid superhelical densities. This may be related to the presence of DNA sequences (-1584 to -1559) 512 bp upstream of (GT)31 that undergo cruciform formation and thereby utilize the available free energy. Removal of 580 bp containing the cruciform region resulted in Z-DNA formation within (GT)31, thus demonstrating that deletion mutations can exert topological changes at a distance within the rGH 5'-flanking region. Methylation of two specific cytosines in the rGH 5'-flanking DNA that have been associated with inhibition of rGH promoter activity had no effect on Z-DNA formation. No evidence for DNA secondary structure formation within the rGH second exon-intron or 3'-flanking region was observed. We conclude that the rGH 5'-flanking region undergoes secondary-structure formation at physiological superhelical densities, thus providing a potential mechanism(s) for modulating rGH activity.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M J Thomas, and T M Freeland, and J S Strobl
September 1999, Gene,
M J Thomas, and T M Freeland, and J S Strobl
April 1997, Archives of biochemistry and biophysics,
M J Thomas, and T M Freeland, and J S Strobl
March 1992, Gene,
M J Thomas, and T M Freeland, and J S Strobl
April 1995, Endocrinology,
M J Thomas, and T M Freeland, and J S Strobl
July 1985, The Journal of biological chemistry,
M J Thomas, and T M Freeland, and J S Strobl
June 2002, The Prostate,
M J Thomas, and T M Freeland, and J S Strobl
August 1997, Endocrinology,
M J Thomas, and T M Freeland, and J S Strobl
February 1998, Animal genetics,
M J Thomas, and T M Freeland, and J S Strobl
March 2007, Biochemical and biophysical research communications,
Copied contents to your clipboard!