In order to study the state of tyrosyl residues in a ribouuclease from bovine semina vesicles [EC 3.1.4.22, RNase Vs1] several lines of experiments were carried out. Spectrophotometric titration of RNase Vs1 indicated that two out of 8 tyrosine residues were titrated very easily and their apparent pKa values were about 9.8. Next, about 4 residues were titrated at pH up to 13.5. The remaining 2 residues were titrated time-dependently at pH 13.5. In 8 M urea, about 6 tyrosine residues were titrated with apparent pK4 values of about 11.2 and about 2 residues were titrated time-dependently at pH 13.5. Acetylation of RNase Vs1 with N-acetylimidazole was studied at pH 7.5. In aqueous solution, about 1.1-3.5 tyrosine residues were acetylated, depending on the experimental conditions, and in 8 M urea, 5.3 tyrosine residues were modified. RNase Vs1 was nitrated with tetranitromethane at pH 7.5. In aqueous solution, about 2.5 tyrosine residues were nitrated very easily; the enzymatic activity of the modified enzymes was 130-200% of that of the native enzyme. In 8 M urea, the reactivity of the tyrosine residues increased and about 4-5.5 residues were modified. The results of chemical modification and spectrophotometric titration indicated that about two tyrosine residues in RNase Vs1 were exposed to the solvent and were more reactive to various reagents, and 3-4 tyrosine residues were less reactive. The final 2 residues were not accessible to the reagent even in the presence of urea, but were titraten at pH 13.5. The solvent perturbation difference spectrum using ethylene glycol as a perturbant indicated that about 4 tyrosine residues were perturbed. When the pH of the enzyme solution was changed from 7.0 to 1.0, the change in optical density of RNase Vs1 due to denaturation blue shift was about 1,600 at 287nm. The optical density change at 287 nm of native RNase Vs1 on exposure to 8 M urea and 6 M guanidine-HCl indicated that the environments of 2-3 and 4 tyrosine residues were changed by the addition of the denaturants, urea and guanidine-HCl, respectively. In RNase Vs1 having about four nitrotyrosine residues, the two most inaccessible tyrosine residues remained resistant to titration with alkali. On adding nucleotide, nitrated RNase Vs1 gave a difference spectrum in the ultraviolet region but not in 320-460 nm region, where nitrotyrosine residues absorb light. This may indicate that tyrosine residues located relatively near the surface of the molecule are not perturbed directly by nucleotide binding.