Isolation and characterization of jack bean beta-galactosidase. 1975

S C Li, and M Y Mazzotta, and S F Chien, and Y T Li

A simple procedure has been devised to isolate beta-galactosidase from jack bean meal. The final preparation gives one major protein banc in disc gel electrophoresis. The substrate specificity of this enzyme toward some natural oligosaccharides, glycoproteins, and sphingoglycolipids has been examined in detail. Among three isomers of N-acetyllactosamine, Galbeta1leads to4GlcNAc; while Galbeta1leads to3GlcNAc was hydrolyzed very slowly. This property can be used to distinguish the galactose linkage in asialo-GM1 (Galbeta1leads to3GalNAcbeta1leads to4Galbeta1leads to4Glcleads toCer) and that in lacto-N-neotetraosylceramide (Galbeta1leads to4GlcNAcbeta1leads to 3Galbeta1leads to4Glcleads toCer). For hydrolyzing glycolipids, the effect of sodium taurodeoxycholate and sodium taurochenodeoxycholate on the rate of hydrolysis was carefully examined. This enzyme hydrolyzes lactosylceramide and asialo-GM1 faster than GM1. These results suggest that in addition to the type and linkage of the penultimate sugar unit, the sugar unit at the distal position of the saccharide chain also affects the hydrolysis rate. It also readily liberates 80% D-galactosyl units from asialo alpha1-acid glycoprotein. Escherichia coli beta-galactosidase on the other hand cannot hydrolyze asialo-alpha1-acid glycoprotein, lactosylceramide, GM1, asialo-GM1, and lacto-N-neotetraosylceramide. The molecular weight of this enzyme is about 75,000 and the isoelectric point is pH 8.0. With p-nitrophenyl beta-D-galactopyranoside as substrate, optimal activity occurs at pH 2.8 with glycine-HCl buffer and at pH 3.5 with citrate-phosphate buffer. With lactose as substrate, the pH optimum in these two buffers are 2.8 and 4.0, respectively. Km values for p-nitrophenyl beta-D-galactopyranoside, o-nitrophenyl beta-D-galactopyranoside and lactose are 0.51 mM, 0.63 mM, and 12.23 mM, respectively. Many inhibitors for this enzyme including inorganic ions, monosaccharides, and glycosides are investigated. In contrast to E. coli beta-galactosidase, jack bean beta-galactosidase is not inhibited by p-aminophenyl thio-beta-D-galactopyranoside.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002635 Chenodeoxycholic Acid A bile acid, usually conjugated with either glycine or taurine. It acts as a detergent to solubilize fats for intestinal absorption and is reabsorbed by the small intestine. It is used as cholagogue, a choleretic laxative, and to prevent or dissolve gallstones. Chenic Acid,Chenodeoxycholate,Chenodiol,Gallodesoxycholic Acid,Chenique Acid,Chenix,Chenofalk,Chenophalk,Henohol,Quenobilan,Quenocol,Sodium Chenodeoxycholate,Acid, Chenic,Acid, Chenique,Acid, Chenodeoxycholic,Acid, Gallodesoxycholic,Chenodeoxycholate, Sodium
D003840 Deoxycholic Acid A bile acid formed by bacterial action from cholate. It is usually conjugated with glycine or taurine. Deoxycholic acid acts as a detergent to solubilize fats for intestinal absorption, is reabsorbed itself, and is used as a choleretic and detergent. Deoxycholate,Desoxycholic Acid,Kybella,Choleic Acid,Deoxycholic Acid, 12beta-Isomer,Deoxycholic Acid, 3beta-Isomer,Deoxycholic Acid, 5alpha-Isomer,Deoxycholic Acid, Disodium Salt,Deoxycholic Acid, Magnesium (2:1) Salt,Deoxycholic Acid, Monoammonium Salt,Deoxycholic Acid, Monopotassium Salt,Deoxycholic Acid, Monosodium Salt,Deoxycholic Acid, Sodium Salt, 12beta-Isomer,Dihydroxycholanoic Acid,Lagodeoxycholic Acid,Sodium Deoxycholate,12beta-Isomer Deoxycholic Acid,3beta-Isomer Deoxycholic Acid,5alpha-Isomer Deoxycholic Acid,Deoxycholate, Sodium,Deoxycholic Acid, 12beta Isomer,Deoxycholic Acid, 3beta Isomer,Deoxycholic Acid, 5alpha Isomer
D004355 Drug Stability The chemical and physical integrity of a pharmaceutical product. Drug Shelf Life,Drugs Shelf Lives,Shelf Life, Drugs,Drug Stabilities,Drugs Shelf Life,Drugs Shelf Live,Life, Drugs Shelf,Shelf Life, Drug,Shelf Live, Drugs,Shelf Lives, Drugs
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
February 1978, Biochimica et biophysica acta,
S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
June 1969, Revista espanola de fisiologia,
S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
October 1968, Biochimica et biophysica acta,
S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
January 2000, Folia microbiologica,
S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
January 2003, Letters in applied microbiology,
S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
August 2006, Journal of microbiology (Seoul, Korea),
S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
August 1977, Biokhimiia (Moscow, Russia),
S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
March 1990, DNA and cell biology,
S C Li, and M Y Mazzotta, and S F Chien, and Y T Li
August 1983, The Biochemical journal,
Copied contents to your clipboard!