Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. 2013

Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
Department of Microbiology, University of Georgia, Athens, Georgia, USA.

Bioluminescence in Vibrio fischeri ES114 is activated by autoinducer pheromones, and this regulation serves as a model for bacterial cell-cell signaling. As in other bacteria, pheromone concentration increases with cell density; however, pheromone synthesis and perception are also modulated in response to environmental stimuli. Previous studies suggested that expression of the pheromone-dependent bioluminescence activator LuxR is regulated in response to glucose by cyclic AMP (cAMP) receptor protein (CRP) (P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 164:45-50, 1985; P. V. Dunlap and E. P. Greenberg, J. Bacteriol. 170:4040-4046, 1988; P. V. Dunlap, J. Bacteriol. 171:1199-1202, 1989; and W. F. Friedrich and E. P. Greenberg, Arch. Microbiol. 134:87-91, 1983). Consistent with this model, we found that bioluminescence in V. fischeri ES114 is modulated by glucose and stimulated by cAMP. In addition, a Δcrp mutant was ∼100-fold dimmer than ES114 and did not increase luminescence in response to added cAMP, even though cells lacking crp were still metabolically capable of producing luminescence. We further discovered that CRP regulates not only luxR but also the alternative pheromone synthase gene ainS. We found that His-tagged V. fischeri CRP could bind sequences upstream of both luxR and ainS, supporting bioinformatic predictions of direct regulation at both promoters. Luminescence increased in response to cAMP if either the ainS or luxR system was under native regulation, suggesting cAMP-CRP significantly increases luminescence through both systems. Finally, using transcriptional reporters in transgenic Escherichia coli, we elucidated two additional regulatory connections. First, LuxR-independent basal transcription of the luxI promoter was enhanced by CRP. Second, the effect of CRP on the ainS promoter depended on whether the V. fischeri regulatory gene litR was also introduced. These results suggest an integral role for CRP in pheromone signaling that goes beyond sensing cell density.

UI MeSH Term Description Entries
D010675 Pheromones Chemical substances, excreted by an organism into the environment, that elicit behavioral or physiological responses from other organisms of the same species. Perception of these chemical signals may be olfactory or by contact. Allelochemical,Allelochemicals,Allomone,Allomones,Ectohormones,Kairomone,Kairomones,Pheromone,Semiochemical,Semiochemicals,Synomones
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011953 Receptors, Cyclic AMP Cell surface proteins that bind cyclic AMP with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized cyclic AMP receptors are those of the slime mold Dictyostelium discoideum. The transcription regulator CYCLIC AMP RECEPTOR PROTEIN of prokaryotes is not included nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Cyclic AMP Receptors,cAMP Receptors,Cyclic AMP Receptor,Receptors, cAMP,cAMP Receptor,Receptor, Cyclic AMP,Receptor, cAMP
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
November 2013, Journal of bacteriology,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
October 1985, Journal of bacteriology,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
September 1988, Journal of bacteriology,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
March 2013, Applied and environmental microbiology,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
December 2012, Current microbiology,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
October 2010, Journal of bacteriology,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
May 2004, Journal of bacteriology,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
October 2006, Applied and environmental microbiology,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
March 2006, Archives of biochemistry and biophysics,
Noreen L Lyell, and Deanna M Colton, and Jeffrey L Bose, and Melissa P Tumen-Velasquez, and John H Kimbrough, and Eric V Stabb
July 1992, Journal of bioluminescence and chemiluminescence,
Copied contents to your clipboard!