Activation mechanisms of adherent human neutrophils. 1990

I Ginis, and A I Tauber
William B. Castle Hematology Research Laboratory, Boston City Hospital, MA.

The mechanism by which unstimulated human neutrophils initiate a respiratory burst on adherence to a surface has been examined. When neutrophils adhere to a plastic surface, they immediately generate a sustained burst of superoxide (O2-). However, this respiratory burst is not initiated by adherence alone, since neutrophils attached to fibronectin fail to mount a response. Adhesion to plastic is calcium (Ca2+) independent, but O2- production requires Ca2(+)-containing buffer in the initiation phase, that is, during adhesion and the early phase of O2- production. The Ca2(+)-dependent step was shown to involve protein kinase C (PK-C) in that the O2- production, but not adherence, was blocked with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), and PK-C was found to translocate from the cytosol to the membrane on adhesion. Furthermore, it may be inferred that this translocation results in the generation of a Ca2+ independent form of PK-C, PK-M, since leupeptin, which inhibits the generation of PK-M, also blocked O2- production. This finding was corroborated by showing that after 5 minutes in a Ca2(+)-containing buffer, enough time to initiate O2- production and PK-C translocation, Ca2+ is no longer required for sustained O2- release. These results, in aggregate, demonstrate that neutrophils are activated by adhesion to plastic to generate O2-, a PK-C-dependent process that appears to involve a Ca2(+)-independent form of the kinase, PK-M. Why adherent neutrophils generate a respiratory burst on plastic and not fibronectin surfaces probably reflects activation of distinct receptors, whose nature must still be defined. Another issue to address is the priming effect of adhesion, since cells adherent to plastic- or fibronectin-coated surfaces have an enhanced O2- response to formylmethionyl-leucine-phenylalanine (FMLP) compared with neutrophils stimulated in suspension. This may relate to increased Ca2+ mobilization, an important mediator of priming for FMLP responses. Thus, adhesion as a priming event does not necessarily initiate cell effector function, and the further elucidation of the plastic and fibronectin models suggests a means of characterizing the crucial event that control neutrophil activation.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010969 Plastics Polymeric materials (usually organic) of large molecular weight which can be shaped by flow. Plastic usually refers to the final product with fillers, plasticizers, pigments, and stabilizers included (versus the resin, the homogeneous polymeric starting material). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Plastic
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

I Ginis, and A I Tauber
May 1998, Journal of immunology (Baltimore, Md. : 1950),
I Ginis, and A I Tauber
January 1988, Tissue & cell,
I Ginis, and A I Tauber
January 1988, Tissue & cell,
I Ginis, and A I Tauber
January 1995, Biomaterials,
I Ginis, and A I Tauber
January 1993, Cell motility and the cytoskeleton,
I Ginis, and A I Tauber
July 1994, The Journal of biological chemistry,
I Ginis, and A I Tauber
January 2002, Respiratory research,
I Ginis, and A I Tauber
January 1997, Molecular biology of the cell,
Copied contents to your clipboard!