Effects of prenatal testosterone treatment and postnatal steroid implantation on growth performance and carcass traits of heifers and steers. 1990

K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
University of Illinois, Urbana 61801.

Two experiments were conducted to evaluate the effect of prenatal testosterone treatment in combination with postnatal steroid implantation (Exp. 1) and to assess the effect of time of prenatal testosterone treatment in conjunction with postnatal steroid implantation (Exp. 2) on animal performance and carcass characteristics. In Exp. 1, seventy-six pregnant cows were assigned randomly to a control group or implanted with testosterone propionate (TP) silastic implants between d 40 and 80 of gestation. Half the heifer calves were selected randomly to be implanted with 200 mg TP plus 20 mg estradiol benzoate (EB); the other half of the steer calves were implanted with 200 mg progesterone plus 20 mg EB on d 1 and 85 of the feedlot trial. Daily gain of heifers was increased 10.4% (P less than .08) due to prenatal testosterone treatment (P) and 16.4% (P less than .05) by postnatal steroid implantation (I). Feed efficiency was 12.9% greater (P less than .05) due to P and 9.5% greater (P less than .05) due to I. Prenatal testosterone treatment decreased (P less than .05) kidney, pelvic and heart fat and final yield grade but increased (P less than .05) ribeye area of heifers. Heifers had greater (P less than .07) liver weights per unit of carcass weight due to P. In Exp. 2, one hundred seventy-four pregnant cows were assigned randomly to a control group or implanted with TP silastic implants on d 42, 63, 84 or 105 of gestation. Half the heifer and steer calves were selected randomly to be implanted on d 1 and 112 of the feedlot trial. Time of P caused a quadratic effect (P less than .08) on birth weight of heifers. There was a quadratic effect (P less than .05) of time of P on daily gain and final weight per day of age of heifers. Feed efficiency of heifers was improved (P less than .05) due to P. Postnatal steroid implantation increased (P less than .05) daily gain and feed efficiency of heifers by 9.6% and 8.6%, respectively. No changes were observed in growth performance of steers due to P. Results from these two trials suggest that the combination of prenatal testosterone treatment and postnatal testosterone and estradiol implantation produced an additive improvement of daily gain, feed efficiency and carcass merit of heifers.

UI MeSH Term Description Entries
D008297 Male Males
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D001724 Birth Weight The mass or quantity of heaviness of an individual at BIRTH. It is expressed by units of pounds or kilograms. Birthweight,Birth Weights,Birthweights,Weight, Birth,Weights, Birth
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004343 Drug Implants Small containers or pellets of a solid drug implanted in the body to achieve sustained release of the drug. Drug Implant,Drug Pellet,Pellets, Drug,Drug Pellets,Implant, Drug,Implants, Drug,Pellet, Drug
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty

Related Publications

K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
April 2009, Journal of animal science,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
January 1987, Meat science,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
October 1993, Journal of animal science,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
January 2021, Journal of the science of food and agriculture,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
October 2009, Journal of animal science,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
December 1999, Journal of animal science,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
October 2022, Animal bioscience,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
May 1987, Journal of animal science,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
September 1996, Journal of animal science,
K C DeHaan, and L L Berger, and D J Kesler, and F K McKeith, and D B Faulkner, and G F Cmarik, and R J Favero
September 2021, Journal of animal science and technology,
Copied contents to your clipboard!