Regulation of mouse preimplantation development: inhibitory effect of genistein, an inhibitor of tyrosine protein phosphorylation, on cleavage of one-cell embryos. 1990

B Besterman, and R M Schultz
Department of Biology, University of Pennsylvania, Philadelphia 19104-6018.

We investigated the effects of genistein, an inhibitor of tyrosine protein phosphorylation, on mouse 1-cell embryos, since in response to mitogenic stimuli tyrosine protein phosphorylation in somatic cells is implicated in initiation of DNA synthesis. Genistein inhibits cleavage of 1-cell embryos in a concentration-dependent and reversible manner; biochanin A, which is a less potent inhibitor of tyrosine protein phosphorylation, is a less potent inhibitor of cell cleavage. Genistein does not inhibit [35S]methionine incorporation, but does inhibit [3H]thymidine incorporation. Consistent with genistein's ability to inhibit cleavage by inhibiting DNA synthesis is that the loss of genistein's ability to inhibit cleavage corresponds with exit of the 1-cell embryos from S phase. Genistein is likely to inhibit tyrosine protein phosphorylation in situ, since it reduces by 80% the relative amount of [32P]phosphotyrosine present in 1-cell embryos; genistein does not inhibit either [32P]orthophosphate uptake or incorporation. As anticipated, genistein has little effect on inhibiting changes in the pattern of phosphoprotein synthesis during the first cell cycle, since tyrosine protein phosphorylation constitutes a small percentage of total protein phosphorylation. Alkalai treatment of [32P]radiolabeled phosphoproteins transferred to Immobilon reveals a base-resistant set of phosphoproteins of Mr = 32,000 that displays cell-cycle changes in phosphorylation. Although these properties suggest that these phosphoproteins may be related to the p34cdc2 protein kinase, phosphoamino acid analysis of [32P]radiolabeled phosphoproteins reveals that they are not enriched for phosphotyrosine; the inactive for p34cdc2 protein kinase contains a high level of phosphotyrosine. Results of these experiments suggest that tyrosine protein phosphorylation in response to the fertilizing sperm may be involved in initiating DNA synthesis in the 1-cell embryo, as well as converting a meiotic cell cycle to a mitotic one.

UI MeSH Term Description Entries
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002970 Cleavage Stage, Ovum The earliest developmental stage of a fertilized ovum (ZYGOTE) during which there are several mitotic divisions within the ZONA PELLUCIDA. Each cleavage or segmentation yields two BLASTOMERES of about half size of the parent cell. This cleavage stage generally covers the period up to 16-cell MORULA. Segmentation Stage, Ovum,Cleavage Stages, Ovum,Ovum Cleavage Stage,Ovum Cleavage Stages,Ovum Segmentation Stage,Ovum Segmentation Stages,Segmentation Stages, Ovum
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005260 Female Females

Related Publications

B Besterman, and R M Schultz
January 1983, Journal of toxicology and environmental health,
B Besterman, and R M Schultz
July 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
B Besterman, and R M Schultz
February 1966, Experimental cell research,
B Besterman, and R M Schultz
January 1996, Reproductive toxicology (Elmsford, N.Y.),
B Besterman, and R M Schultz
January 2015, Developmental biology,
Copied contents to your clipboard!