We investigated the effects of genistein, an inhibitor of tyrosine protein phosphorylation, on mouse 1-cell embryos, since in response to mitogenic stimuli tyrosine protein phosphorylation in somatic cells is implicated in initiation of DNA synthesis. Genistein inhibits cleavage of 1-cell embryos in a concentration-dependent and reversible manner; biochanin A, which is a less potent inhibitor of tyrosine protein phosphorylation, is a less potent inhibitor of cell cleavage. Genistein does not inhibit [35S]methionine incorporation, but does inhibit [3H]thymidine incorporation. Consistent with genistein's ability to inhibit cleavage by inhibiting DNA synthesis is that the loss of genistein's ability to inhibit cleavage corresponds with exit of the 1-cell embryos from S phase. Genistein is likely to inhibit tyrosine protein phosphorylation in situ, since it reduces by 80% the relative amount of [32P]phosphotyrosine present in 1-cell embryos; genistein does not inhibit either [32P]orthophosphate uptake or incorporation. As anticipated, genistein has little effect on inhibiting changes in the pattern of phosphoprotein synthesis during the first cell cycle, since tyrosine protein phosphorylation constitutes a small percentage of total protein phosphorylation. Alkalai treatment of [32P]radiolabeled phosphoproteins transferred to Immobilon reveals a base-resistant set of phosphoproteins of Mr = 32,000 that displays cell-cycle changes in phosphorylation. Although these properties suggest that these phosphoproteins may be related to the p34cdc2 protein kinase, phosphoamino acid analysis of [32P]radiolabeled phosphoproteins reveals that they are not enriched for phosphotyrosine; the inactive for p34cdc2 protein kinase contains a high level of phosphotyrosine. Results of these experiments suggest that tyrosine protein phosphorylation in response to the fertilizing sperm may be involved in initiating DNA synthesis in the 1-cell embryo, as well as converting a meiotic cell cycle to a mitotic one.