Whole-cell currents in macrophages: I. Human monocyte-derived macrophages. 1990

D J Nelson, and B Jow, and F Jow
Department of Medicine, University of Chicago, Illinois 60637.

We examined the variability of occurrence and frequency of voltage-dependent whole-cell currents in human peripheral blood monocyte-derived macrophages (HMDM) maintained in culture for up to three weeks. An increase in cell capacitance from an average value of 9 pF on the day of isolation to 117 pF at 14 days accompanied growth and differentiation in culture. The average resting potential was approximately -34 mV for cells beyond two days in culture. Cells exhibited a voltage- and time-dependent outward current upon membrane depolarization above approximately -30 mV, which appeared to be composed of a number of separate currents with variable expression from donor to donor. Three of these currents are carried by K+. The frequency of each outward current type was calculated for 974 cells obtained from 36 donors. The HMDMs in these studies exhibited two 4-aminopyridine (4-AP) sensitive, time-dependent outward currents (IA and IB) that could be differentiated on the basis of the presence or absence of steady-state inactivation in the physiological potential range, time course of inactivation during maintained depolarization, as well as threshold of activation. The 4-AP-insensitive outward current activated at approximately 10 mV. One component of the 4-AP insensitive-outward current (IC) could be blocked by external TEA and by the exchange of internal CS+ or Na+ for K+. The probability of observing IB and IC appeared to be donor dependent. Following total replacement of internal K+ with CS+, two additional currents could be identified (i) a delayed component of outward current (ID) remained which could be blocked by low concentrations of external Zn2+ (4 microM) and was insensitive to anion replacement in the external solution and (ii) a Cl- current with a reversal potential which shifted in the presence of external anion replacement and which was irreversibly inhibited by the stilbene SITS. The activation of a prominent time-independent inward current was often observed with increasing hyperpolarization. This inward current was blocked by external Ba2+ and corresponded to the inwardly rectifying K+ current. Neither inward nor outward current expression appeared dependent on whether cells were differentiated in adherent or suspension culture nor was there demonstrable differential current expression observed upon transition from suspension to adherent form.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133

Related Publications

D J Nelson, and B Jow, and F Jow
January 2018, Methods in molecular biology (Clifton, N.J.),
D J Nelson, and B Jow, and F Jow
October 2005, Hypertension (Dallas, Tex. : 1979),
D J Nelson, and B Jow, and F Jow
December 2014, Methods (San Diego, Calif.),
D J Nelson, and B Jow, and F Jow
January 2022, Methods in molecular biology (Clifton, N.J.),
D J Nelson, and B Jow, and F Jow
July 1988, Biochemical and biophysical research communications,
D J Nelson, and B Jow, and F Jow
February 1996, Biochemical Society transactions,
D J Nelson, and B Jow, and F Jow
June 2010, American journal of physiology. Cell physiology,
D J Nelson, and B Jow, and F Jow
June 1999, The Journal of pathology,
D J Nelson, and B Jow, and F Jow
February 1982, The Journal of clinical investigation,
D J Nelson, and B Jow, and F Jow
December 2016, Prostaglandins & other lipid mediators,
Copied contents to your clipboard!