Role of transforming growth factor-beta in bone remodeling. 1990

L F Bonewald, and G R Mundy
University of Texas Health Science Center, Department of Medicine, San Antonio 78284-7877.

Transforming growth factor-beta (TGF-beta) plays a critical role in bone remodeling. TGF-beta stimulates matrix protein synthesis, has dramatic effects on the bone cells responsible for bone formation and resorption, and is abundant in bone and bone-conditioned media. Multiple sources of TGF-beta have been described. It was initially purified from platelets. Two distinct forms of TGF-beta have been purified from bone. The second form, TGF-beta II, was initially purified from bone but was then identified in platelets and also as the major TGF-beta in the monkey kidney BSC-1 cell line. The two bone-derived factors were called cartilage-inducing Factor A (CIF-A) and cartilage-inducing Factor B (CIF-B), based on their capacity to induce the formation of extracellular matrix proteins, which are characteristic of cartilage. CIF-A is identical to the TGF-beta purified from platelets, which is called TGF-beta I. CIG-B is the same as TGF-beta II, which was sequenced soon after CIF-B was discovered and characterized. There is 70% sequence homology between the two forms. The largest source of TGF-beta in the body is present in bone (200 micrograms/kg tissue), although the most concentrated source is in platelets. TGF-beta has multiple effects on bone cells depending on their phenotype and/or stage of differentiation. Osteoblasts, the cells responsible for formation of new bone and perhaps cellular control of bone remodeling, are directly affected by TGF-beta, which can induce differentiation or proliferation, depending on the osteoblastic cell type examined. TGF-beta inhibits the formation of osteoclast precursors and bone resorption and, in greater concentrations, has inhibitory effects on isolated osteoclasts, the cells responsible for bone resorption. TGF-beta may act as a bone-coupling factor linking bone resorption to bone formation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D010010 Osteoclasts A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption. Odontoclasts,Cementoclast,Cementoclasts,Odontoclast,Osteoclast
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015291 Transforming Growth Factors Hormonally active polypeptides that can induce the transformed phenotype when added to normal, non-transformed cells. They have been found in culture fluids from retrovirally transformed cells and in tumor-derived cells as well as in non-neoplastic sources. Their transforming activities are due to the simultaneous action of two otherwise unrelated factors, TRANSFORMING GROWTH FACTOR ALPHA and TRANSFORMING GROWTH FACTOR BETA. Transforming Growth Factor,Factor, Transforming Growth,Factors, Transforming Growth,Growth Factor, Transforming,Growth Factors, Transforming

Related Publications

L F Bonewald, and G R Mundy
October 1991, The Journal of bone and joint surgery. American volume,
L F Bonewald, and G R Mundy
July 2023, International journal of molecular sciences,
L F Bonewald, and G R Mundy
December 1996, Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih,
L F Bonewald, and G R Mundy
February 1994, The American journal of pathology,
L F Bonewald, and G R Mundy
April 1993, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
L F Bonewald, and G R Mundy
September 2009, American journal of obstetrics and gynecology,
L F Bonewald, and G R Mundy
July 1994, Journal of cellular biochemistry,
L F Bonewald, and G R Mundy
June 2006, The New England journal of medicine,
L F Bonewald, and G R Mundy
January 1990, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!