The purification and characterization of arginase from Saccharomyces cerevisiae. 1990

S M Green, and E Eisenstein, and P McPhie, and P Hensley
Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, D.C. 20007.

In Saccharomyces cerevisiae, ornithine transcarbamoylase and arginase form a regulatory multienzyme complex (Hensley, P. (1988) Curr. Top. Cell. Regul. 29, 35-75). In this complex, arginase acts as a negative allosteric effector for ornithine transcarbamoylase. Before an analysis of the factors which promote and stabilize complex formation, arginase was purified in milligram quantities from a plasmid-containing, enzyme-overproducing, protease-deficient yeast strain and its physical characterization undertaken. The purified enzyme has a specific activity of 885 mumol urea min-1 mg-1 and a Km for arginine of 15.7 mM. The ultraviolet spectrum has a maximum absorbance at 279 nm, and the steady-state fluorescence emission spectrum has a maximum intensity at 337 nm, suggesting that the 3 tryptophans/polypeptide chain are in a relatively hydrophobic environment. Arginase has a weakly bound manganese responsible for the maintenance of the catalytic activity and is known to be heat activated in the presence of manganese. This effect is half-maximal at 12.1 microM manganese. In addition to a catalytic requirement for manganese, the presence of a more tightly bound metal is suggested from sedimentation studies. The native trimeric enzyme has a sedimentation coefficient of 5.95 S. Removal of the weakly associated metal results in no change in the sedimentation coefficient. However, dialysis with EDTA causes the s-value to decrease to 4.65 S, suggesting that under these conditions, the trimeric enzyme may partially dissociate. An analysis of CD spectra shows that significant spectral changes result from the removal of both the weakly bound metal and dialysis against EDTA.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D001119 Arginase A ureahydrolase that catalyzes the hydrolysis of arginine or canavanine to yield L-ornithine (ORNITHINE) and urea. Deficiency of this enzyme causes HYPERARGININEMIA. EC 3.5.3.1. Arginase A1,Arginase A4,Hepatic Proliferation Inhibitor,Liver Immunoregulatory Protein,Liver-Derived Inhibitory Protein,Liver-Derived Lymphocyte Proliferation Inhibiting Protein,Immunoregulatory Protein, Liver,Inhibitor, Hepatic Proliferation,Inhibitory Protein, Liver-Derived,Liver Derived Inhibitory Protein,Liver Derived Lymphocyte Proliferation Inhibiting Protein,Proliferation Inhibitor, Hepatic,Protein, Liver Immunoregulatory,Protein, Liver-Derived Inhibitory
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry

Related Publications

S M Green, and E Eisenstein, and P McPhie, and P Hensley
August 2001, Current protocols in protein science,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
June 2010, Archives of biochemistry and biophysics,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
March 1987, Biochemistry international,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
March 1979, International journal of peptide and protein research,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
March 1995, European journal of biochemistry,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
September 1997, Biochimica et biophysica acta,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
September 1994, The Journal of biological chemistry,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
April 1984, The Journal of biological chemistry,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
December 1988, The Journal of biological chemistry,
S M Green, and E Eisenstein, and P McPhie, and P Hensley
May 1989, The Journal of biological chemistry,
Copied contents to your clipboard!