Digitoxin sensitizes glioma cells to TRAIL-mediated apoptosis by upregulation of death receptor 5 and downregulation of survivin. 2014

Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
aDepartment of Neurosurgery, School of Medicine bDepartment of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA cDepartment of Obstetrics and Gynecology, College of Medicine, Kosin University, Korea.

Glioblastoma multiforme is the most lethal and aggressive astrocytoma among primary brain tumors in adults. However, most glioblastoma cells have been reported to be resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Here, we have shown that digitoxin (DT), a clinically approved cardiac glycoside for heart failure, can induce TRAIL-mediated apoptosis of glioblastoma cells. DT in noncytotoxic doses (20 nmol/l) can increase TRAIL-induced apoptosis in TRAIL-resistant U87MG glioblastoma cells. Treatment with DT led to apoptosis and a robust reduction in the levels of the antiapoptotic protein survivin by inducing its proteasomal degradation; however, it did not affect the levels of many other apoptosis regulators. Moreover, silencing survivin with small interfering RNAs sensitized glioma cells to TRAIL-induced apoptosis, underscoring the functional role of survivin depletion in the TRAIL-sensitizing actions of DT. We demonstrate that inactivation of survivin and death receptor 5 expression by DT is sufficient to restore TRAIL sensitivity in resistant glioma cells. Our results suggest that combining DT with TRAIL treatments may be useful in the treatment of TRAIL-resistant glioma cells.

UI MeSH Term Description Entries
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D004074 Digitoxin A cardiac glycoside sometimes used in place of DIGOXIN. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665) Coramedan,Digimed,Digimerck,Digitaline Nativelle,Digitoxin AWD,Digitoxin Bürger,Digitoxin Didier,Digitoxin-Philo,Digophton,AWD, Digitoxin,Bürger, Digitoxin,Didier, Digitoxin,Digitoxin Philo,Nativelle, Digitaline
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077022 Survivin An apoptosis inhibitory protein that contains a single baculoviral IAP repeat (BIR) domain. It associates with MICROTUBULES and functions to regulate cell proliferation as a component of the chromosome passage protein complex (CPC), performing essential roles for localization of the complex, chromosome alignment, segregation during MITOSIS and CYTOKINESIS, and assembly of the MITOTIC SPINDLE. It is expressed by fetal kidney and liver cells and highly expressed in ADENOCARCINOMA and high-grade LYMPHOMA. BIRC5 Protein,Baculoviral IAP Repeat-containing Protein 5,Baculoviral IAP Repeat containing Protein 5
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
March 2010, Carcinogenesis,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
May 2014, The Journal of investigative dermatology,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
January 2004, Oncogene,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
December 2019, Oncology reports,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
October 2020, Oncology letters,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
August 2006, Oncology reports,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
November 2008, Molecular cancer therapeutics,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
February 2019, International journal of oncology,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
January 2005, Oncogene,
Dae-Hee Lee, and Chang Sup Lee, and Dong-Wook Kim, and Jeh Eun Ae, and Tae-Hwa Lee
July 2017, Neuroscience letters,
Copied contents to your clipboard!