Ultrastructural analysis of neuronal and non-neuronal lysosomal storage in mucolipidosis type II knock-in mice. 2013

Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany and.

The GlcNAc-1-phosphotransferase catalyzes the first step in the formation of mannose 6-phosphate (M6P) residues on lysosomal acid hydrolases that is essential for the efficient transport of newly synthesized lysosomal enzymes to lysosomes and the maintenance of lysosomal functions. Mutations in the GlcNAc-1-phosphotransferase cause the lysosomal storage disease mucolipidosis type II (MLII), resulting in mistargeting and hypersecretion of multiple lysosomal hydrolases and subsequent lysosomal accumulation of nondegraded material in several tissues. To describe cell-type specificity, compositional differences, and subcellular distribution of the stored material we performed an in-depth ultrastructural analysis of lysosomal storage in brain and retina of MLII knock-in mice using electron microscopy. Massive vacuoles filled with heterogeneous storage material have been found in the soma, swollen axons, and dendrites of Purkinje, and granular cells in 9-month-old MLII mice. In addition, non-neuronal cells, such as microglial, astroglial, and endothelial cells, exhibit storage material. Fucose-specific lectin histochemistry demonstrated the accumulation of fucose-containing oligosaccharides, indicating that targeting of the lysosomal α-fucosidase is strongly impaired in all cerebellar cell types. The data suggest that the accumulation of storage material might affect neuronal function and survival in a direct cell-autonomous manner, as well as indirectly by disturbed metabolic homeostasis between glial and neuronal cells or by cerebrovascular complications.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009081 Mucolipidoses A group of inherited metabolic diseases characterized by the accumulation of excessive amounts of acid mucopolysaccharides, sphingolipids, and/or glycolipids in visceral and mesenchymal cells. Abnormal amounts of sphingolipids or glycolipids are present in neural tissue. INTELLECTUAL DISABILITY and skeletal changes, most notably dysostosis multiplex, occur frequently. (From Joynt, Clinical Neurology, 1992, Ch56, pp36-7) Cherry Red Spot Myoclonus Syndrome,Ganglioside Sialidase Deficiency Disease,I-Cell Disease,Lipomucopolysaccharidosis,Mucolipidosis,Myoclonus Cherry Red Spot Syndrome,Pseudo-Hurler Polydystrophy,Sialidosis,Cherry Red Spot-Myoclonus Syndrome,Deficiency Disease, Ganglioside Sialidase,Glycoprotein Neuraminidase Deficiency,Inclusion Cell Disease,Mucolipidosis I,Mucolipidosis II,Mucolipidosis III,Mucolipidosis III Alpha Beta,Mucolipidosis IIIa,Mucolipidosis IV,Mucolipidosis Type 1,Mucolipidosis Type I,Mucolipidosis Type II,Mucolipidosis Type III,Mucolipidosis Type IV,Myoclonus-Cherry Red Spot Syndrome,Psuedo-Hurler Disease,Sialolipidosis,Type I Mucolipidosis,Type II Mucolipidosis,Type III Mucolipidosis,Type IV Mucolipidosis,Deficiencies, Glycoprotein Neuraminidase,Deficiency, Glycoprotein Neuraminidase,Glycoprotein Neuraminidase Deficiencies,I Cell Disease,I-Cell Diseases,Inclusion Cell Diseases,Lipomucopolysaccharidoses,Mucolipidoses, Type I,Mucolipidoses, Type II,Mucolipidoses, Type III,Mucolipidoses, Type IV,Mucolipidosis, Type I,Mucolipidosis, Type II,Mucolipidosis, Type III,Mucolipidosis, Type IV,Polydystrophy, Pseudo-Hurler,Pseudo Hurler Polydystrophy,Psuedo Hurler Disease,Psuedo-Hurler Diseases,Sialidoses,Sialolipidoses,Type I Mucolipidoses,Type II Mucolipidoses,Type III Mucolipidoses,Type IV Mucolipidoses
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons

Related Publications

Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
November 1985, Pediatric research,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
October 2011, The Journal of biological chemistry,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
January 2014, PloS one,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
February 1979, The Biochemical journal,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
June 2009, Pediatric research,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
September 2022, EMBO molecular medicine,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
July 2019, Human mutation,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
August 2022, Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
December 1998, Virchows Archiv : an international journal of pathology,
Michaela Schweizer, and Sandra Markmann, and Thomas Braulke, and Katrin Kollmann
April 2009, Biochimica et biophysica acta,
Copied contents to your clipboard!