Studies of glutamate dehydrogenase: analysis of functional areas and functional groups. 1975

F Hucho, and I Rasched, and H Sund

1. It is shown by limited tryptic digestion of beef liver glutamate dehydrogenase under native conditions that the amino terminus of the polypeptide chain is located at the surface of the molecule. End-group analysis after trypsin treatment yields aspartic acid as the new N-terminal amino acid while the C-terminal threonine remains unchanged. 2. NADH, especially in the presence of 2-oxoglutarate, protects the enzyme against tryptic degradation. In the absence of the coenzyme, glutamate dehydrogenase is rapidly inactivated. 3. The regulatory effects of ADP and GTP are only slightly altered by trypsin. A small shift of the pH dependence of the activation by ADP is observed. 4. The quaternary structure of the unimer of the enzyme is not affected by limited tryptic digestion indicating that the N-terminal part of the polypeptide chain is not located in the contact domains between the polypeptide chains. The association of the hexamer to large associated particles is reduced but not abolished. 5. It is shown by treatment of the enzyme with iodo[2(-14)C]acetic acid as well as with Ellman's reagent that the six - SH groups of the polypeptide chain are buried and not accessible to these reagents in phosphate buffer. In Tris buffer they become exposed and react in the order 89, 55, 197, 115, 270, 319. This together with the result that in Tris buffer the rat of inactivation caused by trypsin is higher than in phosphate buffer indicates that Tris buffer changes drastically the properties of the enzyme. 6. Cross-linking of the enzyme molecule with bifunctional reagents and subsequent dodecylsulfate-polyacrylamide electrophoresis shows that the six identical polypeptide chains are arranged in two groups of three. 7. The implications of these results for the tertiary and quaternary structure of beef liver glutamate dehydrogenase are discussed.

UI MeSH Term Description Entries
D007094 Imides Organic compounds containing two acyl groups bound to NITROGEN. Imide
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus

Related Publications

F Hucho, and I Rasched, and H Sund
May 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
F Hucho, and I Rasched, and H Sund
April 1977, European journal of biochemistry,
F Hucho, and I Rasched, and H Sund
February 1996, Biochemical Society transactions,
F Hucho, and I Rasched, and H Sund
December 1973, European journal of biochemistry,
F Hucho, and I Rasched, and H Sund
November 1973, Rinsho byori. The Japanese journal of clinical pathology,
F Hucho, and I Rasched, and H Sund
February 1974, European journal of biochemistry,
F Hucho, and I Rasched, and H Sund
March 1974, FEBS letters,
F Hucho, and I Rasched, and H Sund
July 1972, The Biochemical journal,
F Hucho, and I Rasched, and H Sund
March 1981, European journal of biochemistry,
F Hucho, and I Rasched, and H Sund
February 1979, The Biochemical journal,
Copied contents to your clipboard!