Circular-dichroic spectra of vasopressin analogues and their cyclic fragments. 1975

I Fric, and M Kodícek, and M Flegel, and M Zaoral

The circular dichroic spectra of [Arg8]vasopressin, [Mpr1, Arg8]vasopressin, [Mpr1, D-Arg8]-vasopressin, pressinamide, deaminopressinamide, tocinamide, deaminotocinamide, [Leu4, D-Arg8]-vasotocin, [Mpr1, Leu4, D-Arg8]vasotocin and [Phe2, Lys8]vasopressin have been studied. All these substances showed a characteristic positive dichroic band at about 225 nm due to the presence of tyrosine in sequence position 2. The intensity of this band was affected by interactions between the tyrosine side-chain and other structural elements in the molecule, such as the Na-amino group, the side-chain of phenylalanine in position 3 and the linear C-terminal peptide. Analysis of the response of this band to structural modifications of the molecule and change in the solvent (particularly comparing neutral aqueous solutions with hexafluoroacetone solutions) allowed some conformational conclusions. The linear C-terminal tripeptide is probably situated over the cyclic portion of the molecule both in vasopressin and oxytocin substances. Its steric interaction with the tyrosine side-chain seems to be particularly efficient in molecules containing D-arginine in position 8. In the vasopressin series the stacking interaction of neighbouring aromatic amino acid residues furthermore limits the conformational freedom of the tyrosine side-chain and also probably distorts the dihedral angles of residues 1-3 in comparison with oxytocin. The interactions of phenylalanine and arginine with tyrosine relatively decrease the conformational effects of the primary amino group. Consequently the local conformation of vasopressin in the region of the tyrosine residue is more rigid and less sensitive to changes in medium than that of oxytocin. The circular dichroic spectra did not show any basic conformational differences in the backbone peptide chain of oxytocin and vasopressin substances. A weak negative disulphide band at about 290 nm could be observed in the spectra of both series of substances.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D005259 Felypressin A synthetic analog of LYPRESSIN with a PHENYLALANINE substitution at residue 2. Felypressin is a vasoconstrictor with reduced antidiuretic activity. Octapressin,Phelypressin,Phenylalanine Lysine Vasopressin,Vasopressin, Phenylalanyl-Lysyl,Octopressin,PLV-2,Lysine Vasopressin, Phenylalanine,Phenylalanyl-Lysyl Vasopressin,Vasopressin, Phenylalanine Lysine,Vasopressin, Phenylalanyl Lysyl
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D014668 Vasotocin A nonapeptide that contains the ring of OXYTOCIN and the side chain of ARG-VASOPRESSIN with the latter determining the specific recognition of hormone receptors. Vasotocin is the non-mammalian vasopressin-like hormone or antidiuretic hormone regulating water and salt metabolism. 3-Isoleucyl Vasopressin,Arginine Oxytocin,Arginine Vasotocin,Argiprestocin,Vasopressin, Isoleucyl,Vasopressin, Non-Mammalian,(8-Arginine)Oxytocin,Argiprestocine,3 Isoleucyl Vasopressin,Isoleucyl Vasopressin,Non-Mammalian Vasopressin,Oxytocin, Arginine,Vasopressin, 3-Isoleucyl,Vasopressin, Non Mammalian,Vasotocin, Arginine

Related Publications

I Fric, and M Kodícek, and M Flegel, and M Zaoral
November 1985, International journal of peptide and protein research,
I Fric, and M Kodícek, and M Flegel, and M Zaoral
March 1988, European journal of biochemistry,
I Fric, and M Kodícek, and M Flegel, and M Zaoral
February 1992, Biochemistry,
I Fric, and M Kodícek, and M Flegel, and M Zaoral
October 1980, Biochemistry,
I Fric, and M Kodícek, and M Flegel, and M Zaoral
October 1984, Biopolymers,
I Fric, and M Kodícek, and M Flegel, and M Zaoral
January 1986, The International journal of biochemistry,
I Fric, and M Kodícek, and M Flegel, and M Zaoral
April 1977, European journal of biochemistry,
I Fric, and M Kodícek, and M Flegel, and M Zaoral
February 1976, Biochemistry,
I Fric, and M Kodícek, and M Flegel, and M Zaoral
April 1975, Biochemistry,
Copied contents to your clipboard!