Adaptations and limitations in the pulmonary system during exercise. 1990

J A Dempsey, and B D Johnson, and K W Saupe
Department of Preventive Medicine, University of Wisconsin, Madison.

In most circumstances in health, efficient alveolar ventilation and alveolar-to-arterial exchange of O2 and CO2 are among the strongest of links in the gas-transport chain during maximal exercise. Indeed, in most instances, the metabolic cost of ventilation represents the only significant contribution of the pulmonary system to the limitation of O2 transport of locomotor muscles and thus to the limitation of maximum performance. Of the "weaknesses" inherent in the healthy pulmonary system response to exercise, the most serious one may well be its absence of structural adaptability to physical training or to the trained state. Thus, the lung's diffusion capacity and pulmonary capillary blood volume remain unaltered in the highly trained human or horse, while maximum pulmonary blood flow rises linearly with the enhanced max VO2. Similarly, ventilatory requirement rises markedly, with no alteration in the capability of the airways to produce higher flow rates or of the lung parenchyma to stretch to higher tidal volumes, and little or no change in the pressure-generating capability of inspiratory muscles. The case of the elderly athlete who remains capable of achieving high maximum pulmonary blood flows and ventilatory requirements and whose lung undergoes a normal aging process underscores the importance of deficits (from "normal") on the capacity end of this continuum of cost versus capacity in the pulmonary system. The asthmatic athlete may represent another such example of limited flow-generating capacity; and the healthy, young, highly fit athlete who shows marked reductions in SaO2 and in max VO2 at even moderately high altitudes demonstrates that, in many situations, precious little room can be added to the demand side or removed from the capacity side before signs of failure can be seen.

UI MeSH Term Description Entries
D011659 Pulmonary Gas Exchange The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER. Exchange, Pulmonary Gas,Gas Exchange, Pulmonary
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D012143 Respiratory Physiological Phenomena Physiological processes and properties of the RESPIRATORY SYSTEM as a whole or of any of its parts. Respiratory Physiologic Processes,Respiratory Physiological Processes,Respiratory Physiology,Physiology, Respiratory,Pulmonary Physiological Phenomena,Pulmonary Physiological Phenomenon,Pulmonary Physiological Process,Pulmonary Physiological Processes,Respiratory Physiological Concepts,Respiratory Physiological Phenomenon,Respiratory Physiological Process,Concept, Respiratory Physiological,Concepts, Respiratory Physiological,Phenomena, Pulmonary Physiological,Phenomena, Respiratory Physiological,Phenomenas, Pulmonary Physiological,Phenomenas, Respiratory Physiological,Phenomenon, Pulmonary Physiological,Phenomenon, Respiratory Physiological,Phenomenons, Pulmonary Physiological,Phenomenons, Respiratory Physiological,Physiologic Processes, Respiratory,Physiological Concept, Respiratory,Physiological Concepts, Respiratory,Physiological Phenomena, Pulmonary,Physiological Phenomena, Respiratory,Physiological Phenomenas, Pulmonary,Physiological Phenomenas, Respiratory,Physiological Phenomenon, Pulmonary,Physiological Phenomenon, Respiratory,Physiological Phenomenons, Pulmonary,Physiological Phenomenons, Respiratory,Physiological Process, Pulmonary,Physiological Process, Respiratory,Physiological Processes, Pulmonary,Physiological Processes, Respiratory,Process, Pulmonary Physiological,Process, Respiratory Physiological,Processes, Pulmonary Physiological,Pulmonary Physiological Phenomenas,Pulmonary Physiological Phenomenons,Respiratory Physiological Concept,Respiratory Physiological Phenomenas,Respiratory Physiological Phenomenons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D015444 Exercise Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure. Aerobic Exercise,Exercise, Aerobic,Exercise, Isometric,Exercise, Physical,Isometric Exercise,Physical Activity,Acute Exercise,Exercise Training,Activities, Physical,Activity, Physical,Acute Exercises,Aerobic Exercises,Exercise Trainings,Exercise, Acute,Exercises,Exercises, Acute,Exercises, Aerobic,Exercises, Isometric,Exercises, Physical,Isometric Exercises,Physical Activities,Physical Exercise,Physical Exercises,Training, Exercise,Trainings, Exercise
D015656 Respiratory Mechanics The physical or mechanical action of the LUNGS; DIAPHRAGM; RIBS; and CHEST WALL during respiration. It includes airflow, lung volume, neural and reflex controls, mechanoreceptors, breathing patterns, etc. Breathing Mechanics,Breathing Mechanic,Mechanic, Breathing,Mechanic, Respiratory,Mechanics, Breathing,Mechanics, Respiratory,Respiratory Mechanic

Related Publications

J A Dempsey, and B D Johnson, and K W Saupe
March 1982, Canadian journal of applied sport sciences. Journal canadien des sciences appliquees au sport,
J A Dempsey, and B D Johnson, and K W Saupe
March 2012, Experimental physiology,
J A Dempsey, and B D Johnson, and K W Saupe
December 2022, American journal of physiology. Lung cellular and molecular physiology,
J A Dempsey, and B D Johnson, and K W Saupe
January 1988, Advances in experimental medicine and biology,
J A Dempsey, and B D Johnson, and K W Saupe
March 2010, Experimental physiology,
J A Dempsey, and B D Johnson, and K W Saupe
January 2003, Canadian journal of applied physiology = Revue canadienne de physiologie appliquee,
J A Dempsey, and B D Johnson, and K W Saupe
May 2015, Herz,
J A Dempsey, and B D Johnson, and K W Saupe
July 2001, Medicine and science in sports and exercise,
J A Dempsey, and B D Johnson, and K W Saupe
December 2007, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme,
J A Dempsey, and B D Johnson, and K W Saupe
April 1994, International journal of sports medicine,
Copied contents to your clipboard!