Genetic organization of the hydrogen uptake (hup) cluster from Rhizobium leguminosarum. 1990

A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
Laboratorio de Microbiologia, Universidad Politécnica, Madrid, Spain.

In symbiosis with peas, Rhizobium leguminosarum UPM791 induces the synthesis of a hydrogen uptake (Hup) system that recycles hydrogen generated in nodules by nitrogenase. A cosmid (pAL618) containing hup genes from this strain on a 20-kilobase-pair (kb) DNA insert has previously been isolated in our laboratory (A. Leyva, J. M. Palacios, T. Mozo, and T.Ruiz-Argüeso, J. Bacteriol. 169:4929-4934, 1987). Here we show that cosmid pAL618 contains all of the genetic information required to confer high levels of hydrogenase activity on the naturally Hup- strains R. leguminosarum UML2 and Rhizobium phaseoli CFN42, and we also describe in detail the organization of hup genes on pAL618. To study hup gene organization, site-directed transposon mutagenesis and complementation analysis were carried out. According to the Hup phenotype associated with the transposon insertions, hup genes were found to span a 15-kilobase-pair region within pAL618 insert DNA. Complementation analysis revealed that Hup- mutants fell into six distinct complementation groups that define six transcriptional units, designated regions hupI to hupVI. Region hupI was subcloned and expressed in Escherichia coli cells under the control of a bacteriophage T7 promoter. A polypeptide of ca. 65 kilodaltons that was cross-reactive with antiserum against the large subunit of Bradyrhizobium japonicum hydrogenase was detected both in E. coli cells carrying the cloned hupI region and in pea bacteroids from strain UPM791, indicating that region hupI codes for structural genes of R. leguminosarum hydrogenase.

UI MeSH Term Description Entries
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003360 Cosmids Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles. Cosmid
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes

Related Publications

A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
December 1984, Journal of bacteriology,
A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
April 2002, Archives of microbiology,
A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
July 1986, Archives of biochemistry and biophysics,
A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
February 1994, Applied and environmental microbiology,
A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
August 1983, Journal of bacteriology,
A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
April 1982, Journal of bacteriology,
A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
December 2004, Journal of bacteriology,
A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
June 2013, Systematic and applied microbiology,
A Leyva, and J M Palacios, and J Murillo, and T Ruiz-Argüeso
September 2012, Ecology and evolution,
Copied contents to your clipboard!