Maltose metabolism of Pseudomonas fluorescens. 1975

A A Guffanti, and W A Corpe

Pseudomonas fluorescens W uses maltose exclusively by hydrolyzing it to glucose via an inducible alpha-glucosidase (alpha-D-glucoside glucohydrolase, EC 3.2.1.20). No evidence for phosphorolytic cleavage or oxidation to maltobionic acid was found in this organism. The alpha-glucosidase was totally intracellular and was most active at pH of 7.0. Induction occurred when cells were incubated with maltotriose or maltose. Induction was rapid and easily detectable within the first 5 min after the addition of the inducer. Glucose and its derivatives did not repress induction. Cells growing on DL-alanine or succinate plus maltose exhibited lower levels of alpha-glucosidase than those grown on maltose alone or maltose plus glucose. Induction required both messenger ribonucleic acid and protein synthesis.

UI MeSH Term Description Entries
D008320 Maltose A dextrodisaccharide from malt and starch. It is used as a sweetening agent and fermentable intermediate in brewing. (Grant & Hackh's Chemical Dictionary, 5th ed)
D011551 Pseudomonas fluorescens A species of nonpathogenic fluorescent bacteria found in feces, sewage, soil, and water, and which liquefy gelatin. Bacillus fluorescens,Bacillus fluorescens liquefaciens,Bacterium fluorescens,Liquidomonas fluorescens
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002701 Chloramphenicol An antibiotic first isolated from cultures of Streptomyces venequelae in 1947 but now produced synthetically. It has a relatively simple structure and was the first broad-spectrum antibiotic to be discovered. It acts by interfering with bacterial protein synthesis and is mainly bacteriostatic. (From Martindale, The Extra Pharmacopoeia, 29th ed, p106) Cloranfenicol,Kloramfenikol,Levomycetin,Amphenicol,Amphenicols,Chlornitromycin,Chlorocid,Chloromycetin,Detreomycin,Ophthochlor,Syntomycin
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005959 Glucosidases Enzymes that hydrolyze O-glucosyl-compounds. (Enzyme Nomenclature, 1992) EC 3.2.1.-. Glucosidase
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

A A Guffanti, and W A Corpe
November 1972, The Biochemical journal,
A A Guffanti, and W A Corpe
September 1976, Journal of bacteriology,
A A Guffanti, and W A Corpe
October 1986, Applied and environmental microbiology,
A A Guffanti, and W A Corpe
December 1992, BioFactors (Oxford, England),
A A Guffanti, and W A Corpe
May 2010, Biochemistry. Biokhimiia,
A A Guffanti, and W A Corpe
October 1988, Applied and environmental microbiology,
A A Guffanti, and W A Corpe
April 1963, Journal of biochemistry,
A A Guffanti, and W A Corpe
September 1968, The Biochemical journal,
A A Guffanti, and W A Corpe
July 1965, The Biochemical journal,
Copied contents to your clipboard!