Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver. 1985

F J Suchy, and S M Courchene, and B L Blitzer

Taurocholate transport was characterized in basolateral plasma membrane vesicles prepared from the livers of 14-day-old Sprague-Dawley rats using a self-generating Percoll gradient method. Liver plasma membrane protein yield, intravesicular volume, and enrichments of various marker enzymes were similar to those obtained for vesicles from adult rat liver. The basolateral marker enzyme Na+-K+-ATPase was enriched 26-fold in the suckling rat basolateral membrane fraction while the bile canalicular marker enzymes alkaline phosphatase and Mg2+-ATPase were enriched only 3- and 5-fold, respectively. The activities of marker enzymes for endoplasmic reticulum, mitochondria, or lysosomes were not enriched compared with homogenate. In the presence of an inwardly directed 100 mM Na+ gradient, vesicle accumulation of taurocholate transiently reached a concentration 1.5- to 2-fold higher than that at equilibrium ("overshoot") in suckling and adult membrane vesicles, but the initial rate of taurocholate entry and peak intravesicular accumulation were markedly decreased in suckling compared with adult membrane vesicles. In the presence of an inwardly directed 100 mM K+ gradient, the rate of uptake was slower, and no overshoot occurred in either suckling or adult rat vesicles. The decreased rate of Na+-coupled taurocholate uptake by membrane vesicles from suckling rat liver could not be explained on the basis of more rapid dissipation of the transmembrane Na+ gradient. Kinetic studies demonstrated saturable, Na+-dependent taurocholate uptake for both suckling and adult vesicles. However, the Vmax for taurocholate uptake in suckling rat vesicles was less than half of the adult rate (2.46 +/- 0.13 vs. 5.25 +/- 0.22 nmol X mg prot-1 X min-1, respectively, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D005260 Female Females
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F J Suchy, and S M Courchene, and B L Blitzer
October 1989, Hepatology (Baltimore, Md.),
F J Suchy, and S M Courchene, and B L Blitzer
February 1988, Pediatric research,
F J Suchy, and S M Courchene, and B L Blitzer
September 1992, Gastroenterology,
F J Suchy, and S M Courchene, and B L Blitzer
June 1992, The Journal of membrane biology,
F J Suchy, and S M Courchene, and B L Blitzer
July 1996, Hepatology (Baltimore, Md.),
F J Suchy, and S M Courchene, and B L Blitzer
December 1984, Journal of bioenergetics and biomembranes,
F J Suchy, and S M Courchene, and B L Blitzer
July 1989, The Journal of pharmacology and experimental therapeutics,
F J Suchy, and S M Courchene, and B L Blitzer
October 1991, Hepatology (Baltimore, Md.),
F J Suchy, and S M Courchene, and B L Blitzer
September 1978, The Biochemical journal,
F J Suchy, and S M Courchene, and B L Blitzer
October 1992, Archives of biochemistry and biophysics,
Copied contents to your clipboard!