Treatment of infections due to resistant Staphylococcus aureus. 2014

Gregory M Anstead, and Jose Cadena, and Heta Javeri
Medicine Service, South Texas Veterans Health Care System, San Antonio, TX, USA.

This chapter reviews data on the treatment of infections caused by drug-resistant Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA). This review covers findings reported in the English language medical literature up to January of 2013. Despite the emergence of resistant and multidrug-resistant S. aureus, we have seven effective drugs in clinical use for which little resistance has been observed: vancomycin, quinupristin-dalfopristin, linezolid, tigecycline, telavancin, ceftaroline, and daptomycin. However, vancomycin is less effective for infections with MRSA isolates that have a higher MIC within the susceptible range. Linezolid is probably the drug of choice for the treatment of complicated MRSA skin and soft tissue infections (SSTIs); whether it is drug of choice in pneumonia remains debatable. Daptomycin has shown to be non-inferior to either vancomycin or β-lactams in the treatment of staphylococcal SSTIs, bacteremia, and right-sided endocarditis. Tigecycline was also non-inferior to comparator drugs in the treatment of SSTIs, but there is controversy about whether it is less effective than other therapeutic options in the treatment of more serious infections. Telavancin has been shown to be non-inferior to vancomycin in the treatment of SSTIs and pneumonia, but has greater nephrotoxicity. Ceftaroline is a broad-spectrum cephalosporin with activity against MRSA; it is non-inferior to vancomycin in the treatment of SSTIs. Clindamycin, trimethoprim-sulfamethoxazole, doxycycline, rifampin, moxifloxacin, and minocycline are oral anti-staphylococcal agents that may have utility in the treatment of SSTIs and osteomyelitis, but the clinical data for their efficacy is limited. There are also several drugs with broad-spectrum activity against Gm-positive organisms that have reached the phase II and III stages of clinical testing that will hopefully be approved for clinical use in the upcoming years: oritavancin, dalbavancin, omadacycline, tedizolid, delafloxacin, and JNJ-Q2. Thus, there are currently many effective drugs to treat resistant S. aureus infections and many promising agents in the pipeline. Nevertheless, S. aureus remains a formidable adversary, and despite our deep bullpen of potential therapies, there are still frequent treatment failures and unfortunate clinical outcomes. The following discussion summarizes the clinical challenges presented by MRSA, the clinical experience with our current anti-MRSA antibiotics, and the gaps in our knowledge on how to use these agents to most effectively combat MRSA infections.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D016106 Methicillin Resistance Non-susceptibility of a microbe to the action of METHICILLIN, a semi-synthetic penicillin derivative. Methicillin-Resistant,Methicillin Resistant,Resistance, Methicillin
D055624 Methicillin-Resistant Staphylococcus aureus A strain of Staphylococcus aureus that is non-susceptible to the action of METHICILLIN. The mechanism of resistance usually involves modification of normal or the presence of acquired PENICILLIN BINDING PROTEINS. MRSA,Methicillin Resistant Staphylococcus aureus

Related Publications

Gregory M Anstead, and Jose Cadena, and Heta Javeri
September 1982, Annals of internal medicine,
Gregory M Anstead, and Jose Cadena, and Heta Javeri
March 1986, The Journal of hospital infection,
Gregory M Anstead, and Jose Cadena, and Heta Javeri
December 2004, Current opinion in infectious diseases,
Gregory M Anstead, and Jose Cadena, and Heta Javeri
August 2001, The Journal of infection,
Gregory M Anstead, and Jose Cadena, and Heta Javeri
March 2005, Eye (London, England),
Gregory M Anstead, and Jose Cadena, and Heta Javeri
September 1977, Medicine,
Gregory M Anstead, and Jose Cadena, and Heta Javeri
January 1955, Surgical forum,
Gregory M Anstead, and Jose Cadena, and Heta Javeri
December 1982, The Medical letter on drugs and therapeutics,
Gregory M Anstead, and Jose Cadena, and Heta Javeri
January 1957, Surgical forum,
Gregory M Anstead, and Jose Cadena, and Heta Javeri
January 2007, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!