Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x-ray beam. 2013

Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755.

OBJECTIVE Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams. METHODS In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50-200 × 200 mm(2)), incident angles (0°-70°) and imaging regions were all varied. RESULTS The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom. CONCLUSIONS This study indicates that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D001940 Breast In humans, one of the paired regions in the anterior portion of the THORAX. The breasts consist of the MAMMARY GLANDS, the SKIN, the MUSCLES, the ADIPOSE TISSUE, and the CONNECTIVE TISSUES. Breasts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D061089 Radiotherapy, Image-Guided The use of pre-treatment imaging modalities to position the patient, delineate the target, and align the beam of radiation to achieve optimal accuracy and reduce radiation damage to surrounding non-target tissues. Image-Guided Radiation Therapy,Radiotherapy Target Organ Alignment,Target Organ Alignment, Radiotherapy,Image Guided Radiation Therapy,Image-Guided Radiation Therapies,Image-Guided Radiotherapies,Image-Guided Radiotherapy,Radiation Therapies, Image-Guided,Radiation Therapy, Image-Guided,Radiotherapies, Image-Guided,Radiotherapy, Image Guided,Therapies, Image-Guided Radiation,Therapy, Image-Guided Radiation
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
July 1998, Medical physics,
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
July 2016, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
May 2019, Medical physics,
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
April 2014, Medical physics,
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
July 1964, Physics in medicine and biology,
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
June 2016, Nanoscale,
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
October 2016, Physics in medicine and biology,
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
March 1981, The International journal of applied radiation and isotopes,
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
May 2019, Medical physics,
Rongxiao Zhang, and Adam K Glaser, and David J Gladstone, and Colleen J Fox, and Brian W Pogue
July 2013, Medical physics,
Copied contents to your clipboard!