Tolerance induction in antigen-specific helper T cell clones and lines in vitro. 1985

J D Levich, and D E Parks, and W O Weigle

The induction of T cell tolerance in vitro was investigated by using HGG-specific murine helper T cell (Th) clones and cell lines. It was found that exposure of Th to monomeric HGG (tolerogen) for 18 hr rendered the Th unable to reconstitute the PFC response of HGG-primed B cells. The tolerant state was not a result of Th cell death, as up to 100% of Th could be recovered after exposure to the monomer, and in addition, the recovered cells proliferated in response to IL2. B cells were shown not to be significantly affected by the presence of monomeric HGG in amounts calculated to be carried over from the tolerization cultures into the assay cultures. Consequently, it was concluded that interaction between Th and monomeric HGG induced unresponsiveness at the T cell level. A comparison of the tolerogenic potential of monomeric, soluble, and aggregated HGG revealed that only the monomer could induce tolerance in Th. Monomeric HGG was also shown to induce tolerance in an antigen-specific manner. Th reactive to HGG could be tolerized by monomeric HGG, but not Th reactive to FGG or OVA. Helper function of Th was also shown to be antigen specific in that HGG-reactive Th helped only HGG-primed B cells. Certain HGG-specific Th clones were found to be refractory to tolerization with monomeric HGG, whereas other clones derived from the same uncloned cell line were tolerizable.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D010047 Ovalbumin An albumin obtained from the white of eggs. It is a member of the serpin superfamily. Serpin B14
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005719 gamma-Globulins Serum globulins that migrate to the gamma region (most positively charged) upon ELECTROPHORESIS. At one time, gamma-globulins came to be used as a synonym for immunoglobulins since most immunoglobulins are gamma globulins and conversely most gamma globulins are immunoglobulins. But since some immunoglobulins exhibit an alpha or beta electrophoretic mobility, that usage is in decline. gamma-Globulin,gamma Globulin,gamma Globulins
D006377 T-Lymphocytes, Helper-Inducer Subpopulation of CD4+ lymphocytes that cooperate with other lymphocytes (either T or B) to initiate a variety of immune functions. For example, helper-inducer T-cells cooperate with B-cells to produce antibodies to thymus-dependent antigens and with other subpopulations of T-cells to initiate a variety of cell-mediated immune functions. Helper Cell,Helper Cells,Helper T Cell,Helper-Inducer T-Lymphocytes,Inducer Cell,Inducer Cells,T-Cells, Helper-Inducer,T-Lymphocytes, Helper,T-Lymphocytes, Inducer,Helper T-Cells,Cell, Helper T,Cells, Helper T,Helper Inducer T Lymphocytes,Helper T Cells,Helper T-Cell,Helper T-Lymphocyte,Helper T-Lymphocytes,Helper-Inducer T-Cell,Helper-Inducer T-Cells,Helper-Inducer T-Lymphocyte,Inducer T-Lymphocyte,Inducer T-Lymphocytes,T Cell, Helper,T Cells, Helper,T Cells, Helper Inducer,T Lymphocytes, Helper,T Lymphocytes, Helper Inducer,T Lymphocytes, Inducer,T-Cell, Helper,T-Cell, Helper-Inducer,T-Cells, Helper,T-Lymphocyte, Helper,T-Lymphocyte, Helper-Inducer,T-Lymphocyte, Inducer
D006462 Hemolytic Plaque Technique A method to identify and enumerate cells that are synthesizing ANTIBODIES against ANTIGENS or HAPTENS conjugated to sheep RED BLOOD CELLS. The sheep red blood cells surrounding cells secreting antibody are lysed by added COMPLEMENT producing a clear zone of HEMOLYSIS. (From Illustrated Dictionary of Immunology, 3rd ed) Jerne's Plaque Technique,Hemolytic Plaque Technic,Jerne's Plaque Technic,Hemolytic Plaque Technics,Hemolytic Plaque Techniques,Jerne Plaque Technic,Jerne Plaque Technique,Jernes Plaque Technic,Jernes Plaque Technique,Plaque Technic, Hemolytic,Plaque Technic, Jerne's,Plaque Technics, Hemolytic,Plaque Technique, Hemolytic,Plaque Technique, Jerne's,Plaque Techniques, Hemolytic,Technic, Hemolytic Plaque,Technic, Jerne's Plaque,Technics, Hemolytic Plaque,Technique, Hemolytic Plaque,Technique, Jerne's Plaque,Techniques, Hemolytic Plaque

Related Publications

J D Levich, and D E Parks, and W O Weigle
June 1996, The Journal of experimental medicine,
J D Levich, and D E Parks, and W O Weigle
June 1984, The Journal of clinical investigation,
J D Levich, and D E Parks, and W O Weigle
December 1982, European journal of immunology,
J D Levich, and D E Parks, and W O Weigle
April 1991, Journal of immunological methods,
J D Levich, and D E Parks, and W O Weigle
May 1985, Clinical immunology and immunopathology,
J D Levich, and D E Parks, and W O Weigle
January 2019, Methods in molecular biology (Clifton, N.J.),
J D Levich, and D E Parks, and W O Weigle
September 1990, Infection and immunity,
J D Levich, and D E Parks, and W O Weigle
February 1984, Current eye research,
Copied contents to your clipboard!