The effect of gamma-type endorphins on alpha-MSH release in the rat. 1985

A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied

Neuroleptic drugs increase the level of alpha-melanotropin (alpha-MSH) in the blood of the rat. We have investigated whether neuroleptic-like peptides, the gamma-type endorphins, also affect alpha-MSH release. A structure-activity study revealed that (des-enkephalin)-gamma-endorphin (DE gamma E, beta-LPH-(66-77), beta-endorphin-(6-17)) is able to increase plasma alpha-MSH levels after intracerebroventricular injection, while the longer gamma-type endorphins, i.e. gamma E (beta-LPH-(61-77)), beta-endorphin-(1-17)), and DT gamma E (beta-LPH-(62-77), beta-endorphin-(2-17)) were without effect in the dosage used. A dose-response study revealed a more or less bell-shaped relationship for the effect of DE gamma E on plasma alpha-MSH levels. The effect of DE gamma E could not be counteracted by apomorphine or naloxone. The observations indicate that DE gamma E increases plasma alpha-MSH levels in a way distinct from that of haloperidol and the opiate peptide beta-endorphin. On the other hand, a time-course of plasma alpha-MSH levels after DE gamma E administration resembled the one which has been seen after haloperidol injection. From experiments performed on pituitary neurointermediate lobes incubated in vitro, it seems not likely that DE gamma E acts directly on the dopamine receptors of the pituitary in affecting alpha-MSH release. In conclusion, it appears that DE gamma E affects alpha-MSH levels in plasma in a way distinct from that of the neuroleptic drug haloperidol and of the opiate-peptide beta-endorphin.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D009074 Melanocyte-Stimulating Hormones Peptides with the ability to stimulate pigmented cells MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. By stimulating the synthesis and distribution of MELANIN in these pigmented cells, they increase coloration of skin and other tissue. MSHs, derived from pro-opiomelanocortin (POMC), are produced by MELANOTROPHS in the INTERMEDIATE LOBE OF PITUITARY; CORTICOTROPHS in the ANTERIOR LOBE OF PITUITARY, and the hypothalamic neurons in the ARCUATE NUCLEUS OF HYPOTHALAMUS. MSH,Melanocyte Stimulating Hormone,Melanocyte-Stimulating Hormone,Melanophore Stimulating Hormone,Melanotropin,MSH (Melanocyte-Stimulating Hormones),Melanophore-Stimulating Hormone,Hormone, Melanocyte Stimulating,Hormone, Melanocyte-Stimulating,Hormone, Melanophore Stimulating,Melanocyte Stimulating Hormones,Stimulating Hormone, Melanocyte,Stimulating Hormone, Melanophore
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
January 1982, Brain research,
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
November 1977, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
November 1980, Journal of pharmacobio-dynamics,
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
February 1970, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
June 1987, Brain research,
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
January 1982, Peptides,
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
November 1981, Neuroendocrinology,
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
December 2006, Neuroscience letters,
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
January 1995, Peptides,
A A de Rotte, and T B van Wimersma Greidanus, and M van de Buuse, and E A Andringa-Bakker, and D de Wied
April 1983, European journal of pharmacology,
Copied contents to your clipboard!