Inhaled salbutamol does not affect athletic performance in asthmatic and non-asthmatic cyclists. 2015

Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.

BACKGROUND Salbutamol may affect lung function and exercise performance differently in individuals with and without asthma. OBJECTIVE To compare the effects of inhaled salbutamol on lung function, exercise performance and respiratory parameters during cycling exercise in athletes with a positive response to a eucapnic voluntary hyperpnoea (EVH+) and negative (EVH-) challenge, indicative of exercise-induced bronchoconstriction. METHODS In a randomised controlled trial with a crossover design, a total of 49 well-trained male athletes (14 EVH+ and 35 EVH-) performed two simulated 10 km time-trials on a cycle ergometer 60 min after the inhalation of either 400 μg of salbutamol or a placebo. Lung function, assessed by forced expiratory volume in 1 s, was measured immediately before and 30 min after inhalation. Performance was measured by mean power output. RESULTS Despite a significant increase in lung function after the inhalation of salbutamol compared to the placebo (p<0.001), salbutamol did not affect athletes' perceptions of dyspnoea (p>0.05) or leg exertion (p>0.05) during exercise. Salbutamol did not affect mean power output: EVH+ and EVH- athletes averaged 4.0 (0.5) and 4.1 (0.5) W/kg after salbutamol and 4.0 (0.5) W/kg and 4.0 (0.4) W/kg after placebo, respectively (p>0.05 for each comparison). CONCLUSIONS The inhalation of salbutamol induced a significant increase in resting lung function in EVH+ and EVH- athletes but this improvement in lung function did not translate to improved exercise performance. Salbutamol had no discernible effect on key ventilatory and exercise parameters regardless of EVH challenge outcome.

UI MeSH Term Description Entries
D006985 Hyperventilation A pulmonary ventilation rate faster than is metabolically necessary for the exchange of gases. It is the result of an increased frequency of breathing, an increased tidal volume, or a combination of both. It causes an excess intake of oxygen and the blowing off of carbon dioxide. Hyperventilations
D008297 Male Males
D001993 Bronchodilator Agents Agents that cause an increase in the expansion of a bronchus or bronchial tubes. Bronchial-Dilating Agents,Bronchodilator,Bronchodilator Agent,Broncholytic Agent,Bronchodilator Effect,Bronchodilator Effects,Bronchodilators,Broncholytic Agents,Broncholytic Effect,Broncholytic Effects,Agent, Bronchodilator,Agent, Broncholytic,Agents, Bronchial-Dilating,Agents, Bronchodilator,Agents, Broncholytic,Bronchial Dilating Agents,Effect, Bronchodilator,Effect, Broncholytic,Effects, Bronchodilator,Effects, Broncholytic
D004311 Double-Blind Method A method of studying a drug or procedure in which both the subjects and investigators are kept unaware of who is actually getting which specific treatment. Double-Masked Study,Double-Blind Study,Double-Masked Method,Double Blind Method,Double Blind Study,Double Masked Method,Double Masked Study,Double-Blind Methods,Double-Blind Studies,Double-Masked Methods,Double-Masked Studies,Method, Double-Blind,Method, Double-Masked,Methods, Double-Blind,Methods, Double-Masked,Studies, Double-Blind,Studies, Double-Masked,Study, Double-Blind,Study, Double-Masked
D005541 Forced Expiratory Volume Measure of the maximum amount of air that can be expelled in a given number of seconds during a FORCED VITAL CAPACITY determination . It is usually given as FEV followed by a subscript indicating the number of seconds over which the measurement is made, although it is sometimes given as a percentage of forced vital capacity. Forced Vital Capacity, Timed,Timed Vital Capacity,Vital Capacity, Timed,FEVt,Capacities, Timed Vital,Capacity, Timed Vital,Expiratory Volume, Forced,Expiratory Volumes, Forced,Forced Expiratory Volumes,Timed Vital Capacities,Vital Capacities, Timed,Volume, Forced Expiratory,Volumes, Forced Expiratory
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000280 Administration, Inhalation The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract. Drug Administration, Inhalation,Drug Administration, Respiratory,Drug Aerosol Therapy,Inhalation Drug Administration,Inhalation of Drugs,Respiratory Drug Administration,Aerosol Drug Therapy,Aerosol Therapy, Drug,Drug Therapy, Aerosol,Inhalation Administration,Administration, Inhalation Drug,Administration, Respiratory Drug,Therapy, Aerosol Drug,Therapy, Drug Aerosol
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000420 Albuterol A short-acting beta-2 adrenergic agonist that is primarily used as a bronchodilator agent to treat ASTHMA. Albuterol is prepared as a racemic mixture of R(-) and S(+) stereoisomers. The stereospecific preparation of R(-) isomer of albuterol is referred to as levalbuterol. Salbutamol,2-t-Butylamino-1-(4-hydroxy-3-hydroxy-3-hydroxymethyl)phenylethanol,Albuterol Sulfate,Proventil,Sultanol,Ventolin
D001249 Asthma A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL). Asthma, Bronchial,Bronchial Asthma,Asthmas

Related Publications

Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
October 2004, International journal of sports medicine,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
September 2001, Thorax,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
August 1994, The European respiratory journal,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
April 1987, The Physician and sportsmedicine,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
November 2015, Medicine and science in sports and exercise,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
October 1971, British journal of pharmacology,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
August 2000, International journal of sports medicine,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
May 2017, Acta medica Iranica,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
October 2014, International journal of sport nutrition and exercise metabolism,
Sarah Koch, and Martin J MacInnis, and Benjamin C Sporer, and James L Rupert, and Michael S Koehle
January 2002, Pulmonary pharmacology & therapeutics,
Copied contents to your clipboard!