Gastroduodenal mucosal defense. 2013

Thomas Kemmerly, and Jonathan D Kaunitz
aCedars-Sinai Medical Residency Program bGreater Los Angeles Veteran Affairs Healthcare System, WLAVA Medical Center cDepartment of Medicine dDepartment of Surgery, UCLA School of Medicine eCURE: Digestive Diseases Research Center Department of Medicine fBrentwood Biomedical Research Institute, Los Angeles, California, USA.

OBJECTIVE To review recent developments in the field of gastroduodenal mucosal defense. RESULTS Research in the field of gastroduodenal mucosal defense has focused on continued elucidation of molecular mechanisms that protect the mucosa and influence healing at the cellular level. Review of literature over the past year reveals focus on familiar processes such as superoxide dismutase, nitric oxide, heme oxygenase-1, neutrophil infiltration, cysteamine, mucin, hydrogen sulfide, ghrelin, adiponectin and the influence of Helicobacter pylori, but also brings into light new processes such as the balance between apoptosis and cellular proliferation, as well as the influence of other organ systems such as the bone marrow and central nervous system on the gastrointestinal tract. CONCLUSIONS These new published findings contribute to our overall understanding of gastroduodenal defense and suggest innovative avenues of future research and possible novel therapeutic targets.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D009077 Mucins High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface. Mucin
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D005753 Gastric Mucosa Lining of the STOMACH, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. The surface cells produce MUCUS that protects the stomach from attack by digestive acid and enzymes. When the epithelium invaginates into the LAMINA PROPRIA at various region of the stomach (CARDIA; GASTRIC FUNDUS; and PYLORUS), different tubular gastric glands are formed. These glands consist of cells that secrete mucus, enzymes, HYDROCHLORIC ACID, or hormones. Cardiac Glands,Gastric Glands,Pyloric Glands,Cardiac Gland,Gastric Gland,Gastric Mucosas,Gland, Cardiac,Gland, Gastric,Gland, Pyloric,Glands, Cardiac,Glands, Gastric,Glands, Pyloric,Mucosa, Gastric,Mucosas, Gastric,Pyloric Gland
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016480 Helicobacter pylori A spiral bacterium active as a human gastric pathogen. It is a gram-negative, urease-positive, curved or slightly spiral organism initially isolated in 1982 from patients with lesions of gastritis or peptic ulcers in Western Australia. Helicobacter pylori was originally classified in the genus CAMPYLOBACTER, but RNA sequencing, cellular fatty acid profiles, growth patterns, and other taxonomic characteristics indicate that the micro-organism should be included in the genus HELICOBACTER. It has been officially transferred to Helicobacter gen. nov. (see Int J Syst Bacteriol 1989 Oct;39(4):297-405). Campylobacter pylori,Campylobacter pylori subsp. pylori,Campylobacter pyloridis,Helicobacter nemestrinae
D016481 Helicobacter Infections Infections with organisms of the genus HELICOBACTER, particularly, in humans, HELICOBACTER PYLORI. The clinical manifestations are focused in the stomach, usually the gastric mucosa and antrum, and the upper duodenum. This infection plays a major role in the pathogenesis of type B gastritis and peptic ulcer disease. Infections, Helicobacter,Helicobacter Infection,Infection, Helicobacter
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Thomas Kemmerly, and Jonathan D Kaunitz
November 2012, Current opinion in gastroenterology,
Thomas Kemmerly, and Jonathan D Kaunitz
December 2008, Current gastroenterology reports,
Thomas Kemmerly, and Jonathan D Kaunitz
November 2000, Current opinion in gastroenterology,
Thomas Kemmerly, and Jonathan D Kaunitz
November 1999, Current opinion in gastroenterology,
Thomas Kemmerly, and Jonathan D Kaunitz
November 2006, Current opinion in gastroenterology,
Thomas Kemmerly, and Jonathan D Kaunitz
November 2008, Current opinion in gastroenterology,
Thomas Kemmerly, and Jonathan D Kaunitz
November 2010, Current opinion in gastroenterology,
Thomas Kemmerly, and Jonathan D Kaunitz
November 2009, Current opinion in gastroenterology,
Thomas Kemmerly, and Jonathan D Kaunitz
November 2015, Current opinion in gastroenterology,
Thomas Kemmerly, and Jonathan D Kaunitz
November 2002, Current opinion in gastroenterology,
Copied contents to your clipboard!