Cerebellar hypoplasia in the Gunn rat is associated with quantitative changes in neurotypic and gliotypic proteins. 1985

J P O'Callaghan, and D B Miller

We are characterizing toxicant-induced injury to the nervous system by measuring nervous system, cell-type specific proteins together with accompanying changes in morphology and behavior. In the present study, cerebellar neurotoxicity was assessed in the Gunn rat, an autosomal recessive mutant that exhibits degeneration of Purkinje cells due to hereditary hyperbilirubinemia. Five proteins associated with neuronal or glial cell types were chosen for evaluation as follows: G-substrate, a Purkinje cell-specific phosphoprotein that serves as the endogenous substrate of cyclic GMP-dependent protein kinase; PCPP-260, a Purkinje cell-specific phosphoprotein that serves as an endogenous substrate of cyclic AMP-dependent protein kinase; synapsin I, a synapse-specific phosphoprotein present in all neurons; glial fibrillary acidic protein, an astrocyte-specific protein; and myelin basic protein, a protein unique to myelin. In comparison to heterozygote (Jj) controls, homozygous (jj) rats showed alterations in the amounts of neurotypic and gliotypic proteins in cerebellum that were consistent with the neuropathological effects associated with development of hyperbilirubinemia in the Gunn rat. Decreased cerebellar cyclic GMP, but not cyclic AMP, alterations in indices of motoric competence and increased responsiveness to a nociceptive stimulus also were observed in jj rats. In general, the degree of cerebellar hypoplasia was predictive of the degree of biochemical, morphological or behavioral change observed. The results indicate that neurotypic and gliotyic proteins may be used as biochemical indicators of neurotoxicity.

UI MeSH Term Description Entries
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011911 Rats, Gunn Mutant strain of Rattus norvegicus which is used as a disease model of kernicterus. Gunn Rat,Gunn Rats,Rat, Gunn
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons

Related Publications

J P O'Callaghan, and D B Miller
June 1983, Neurochemical research,
J P O'Callaghan, and D B Miller
January 1988, Neurotoxicology and teratology,
J P O'Callaghan, and D B Miller
March 1993, Nagoya journal of medical science,
J P O'Callaghan, and D B Miller
October 1982, Journal of neurochemistry,
Copied contents to your clipboard!