Sestrin 3 regulation in type 2 diabetic patients and its influence on metabolism and differentiation in skeletal muscle. 2013

Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and.

In mammals, the sestrin family is composed of three stress-responsive genes. Ablation of sestrin in Drosophila attenuates longevity, which is accompanied by increased S6K phosphorylation and decreased AMPK phosphorylation. Nevertheless, the metabolic role of sestrins in mammals is not comprehensively understood. We characterized the expression of individual sestrin family members and determined their role in vastus lateralis muscle biopsies from participants with normal glucose tolerance (NGT) or type 2 diabetes (T2D). Expression of sestrin 1 or sestrin 2 mRNA was unaltered between the NGT and T2D participants. Conversely, sestrin 3 mRNA was increased in T2D patients and correlated with fasting plasma glucose, 2-h postprandial plasma glucose and HbA1c. A trend for increased sestrin 3 protein was observed in T2D patients. In human primary myotubes, sestrin 3 mRNA increased during differentiation, and this response was unaltered in T2D-derived myotubes. Long-term treatment of myotubes with insulin or AICAR decreased sestrin 3 mRNA. Exposure of myotubes to the reactive oxygen species H2O2 increased mRNA expression of sestrin 1 and 2, whereas sestrin 3 was unaltered. siRNA-mediated silencing of sestrin 3 in myotubes was without effect on insulin-stimulated glucose incorporation into glycogen or AICAR-stimulated palmitate oxidation. These results provide evidence against sestrin 3 in the direct control of glucose or lipid metabolism in human skeletal muscle. However, siRNA-mediated sestrin 3 gene silencing in myotubes increased myostatin expression. Collectively, our results indicate sestrin 3 is upregulated in T2D and could influence skeletal muscle differentiation without altering glucose and lipid metabolism.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
January 1988, Diabetic medicine : a journal of the British Diabetic Association,
Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
July 2002, Nihon rinsho. Japanese journal of clinical medicine,
Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
November 2017, Endocrine research,
Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
December 2013, American journal of physiology. Endocrinology and metabolism,
Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
June 2004, The Journal of endocrinology,
Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
June 2003, Circulation,
Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
May 1998, The Journal of clinical endocrinology and metabolism,
Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
September 2004, Diabetes,
Emmani Bm Nascimento, and Megan E Osler, and Juleen R Zierath
May 2011, Diabetes/metabolism research and reviews,
Copied contents to your clipboard!