Effects of in vitro aldosterone on the rabbit cortical collecting tubule. 1985

C S Wingo, and J P Kokko, and H R Jacobson

Considerable evidence indicates that the cortical collecting tubule is a target epithelium for aldosterone. Isolated perfused cortical collecting tubules from rabbits given large doses of deoxycorticosterone acetate (DOCA) for several days, or whose endogenous production of aldosterone is increased by dietary means, exhibit large lumen-negative transepithelial voltages, increased sodium (Na) absorption, and increased potassium (K) secretion compared with tubules from normal animals. However, controversy exists regarding the response of this nephron segment to acute in vitro administration of aldosterone. To address this issue we performed three groups of experiments: 1) clearance experiments on adrenalectomized rabbits to determine the minimum time required after in vivo aldosterone administration before significant changes in sodium excretion are observed; 2) microperfusion experiments on cortical collecting tubules from normal and adrenalectomized rabbits in which transepithelial voltage was measured before and after adding aldosterone to the bath; 3) microperfusion experiments on cortical collecting tubules from adrenalectomized rabbits in which transepithelial voltage, sodium and potassium flux were measured before and after in vitro exposure to aldosterone or dexamethasone. The clearance studies demonstrate that after a 2 hr latent period aldosterone produces significant antinatriuresis without change in K excretion. In vitro studies failed to reveal a steroid-induced change in the transepithelial voltage of cortical collecting tubules from either normal or adrenalectomized rabbits. However, aldosterone added in vitro to collecting tubules from adrenalectomized rabbits produced an increase in net Na absorption without a significant change in voltage or K secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D009318 Natriuresis Sodium excretion by URINATION. Natriureses
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D005260 Female Females
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal
D000315 Adrenalectomy Excision of one or both adrenal glands. (From Dorland, 28th ed) Adrenalectomies

Related Publications

C S Wingo, and J P Kokko, and H R Jacobson
December 1981, The Journal of clinical investigation,
C S Wingo, and J P Kokko, and H R Jacobson
December 1987, Journal of developmental physiology,
C S Wingo, and J P Kokko, and H R Jacobson
November 1987, The American journal of physiology,
C S Wingo, and J P Kokko, and H R Jacobson
January 1980, Advances in experimental medicine and biology,
C S Wingo, and J P Kokko, and H R Jacobson
February 1985, The Journal of clinical investigation,
C S Wingo, and J P Kokko, and H R Jacobson
May 1982, The American journal of physiology,
C S Wingo, and J P Kokko, and H R Jacobson
February 1983, The American journal of physiology,
C S Wingo, and J P Kokko, and H R Jacobson
December 1992, The American journal of physiology,
C S Wingo, and J P Kokko, and H R Jacobson
October 1985, Kidney international,
C S Wingo, and J P Kokko, and H R Jacobson
November 1982, The American journal of physiology,
Copied contents to your clipboard!