Photoaffinity labeling of the follitropin receptor. 1985

J Shin, and T H Ji

A photoactivatable derivative of human follitropin was used to identify the follitropin receptor on porcine granulosa cells. The hormone was condensed with a heterobifunctional reagent, the N-hydroxysuccinimide ester of 4-azidobenzoylglycine, and radioiodinated. The 125I-labeled hormone (125I-hormone) derivative associated with the same number of receptors as 125I-hormone itself, but with a slightly lower Ka, 1.12 X 10(10) M-1 compared with 1.4 X 10(10) M-1 for the 125I-hormone. The binding could be blocked with untreated hormone. Its alpha and beta subunits could be cross-linked to produce alpha beta dimer by photolysis. When the 125I-hormone derivative bound to the cells was photolyzed for crosslinking and the products resolved by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels under reducing conditions, two new bands (106 and 61 kDa) of lower electrophoretic mobility appeared in addition to the alpha, beta, and alpha beta bands. Formation of these crosslinked complexes required photolysis, and the 125I-hormone derivative specifically bound to cells bearing the receptor. Binding could be blocked by excess untreated follitropin but not with human choriogonadotropin and thyrotropin. Under nonreducing conditions, one major band (104 kDa) of cross-linked complexes appeared. Upon reduction with dithiothreitol and second-dimensional electrophoresis, the 104-kDa band produced two smaller complexes of 75 and 61 kDa, indicating the loss of two components and the existence of intercomponent disulfides. Successful production of the 104-kDa complex requires blocking of free sulfhydryl groups with N-ethylmaleimide. It is, however, independent of various protease inhibitors or the temperature and the time period of hormone incubation with cells or the plasma membrane fraction. The mass estimates and the interaction with the hormone of the photoaffinity-labeled components are discussed.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D010908 Pituitary Hormones, Anterior Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Structurally, they include polypeptide, protein, and glycoprotein molecules. Adenohypophyseal Hormones,Anterior Pituitary Hormones,Hormones, Adenohypophyseal,Hormones, Anterior Pituitary
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011962 Receptors, FSH Cell surface proteins that bind FOLLICLE STIMULATING HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. FSH Receptors,Follicle-Stimulating Hormone Receptors,Receptors, Follicle-Stimulating Hormone,FSH Receptor,Follicle-Stimulating Hormone Receptor,Follicle Stimulating Hormone Receptor,Follicle Stimulating Hormone Receptors,Hormone Receptor, Follicle-Stimulating,Hormone Receptors, Follicle-Stimulating,Receptor, FSH,Receptor, Follicle-Stimulating Hormone,Receptors, Follicle Stimulating Hormone
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking

Related Publications

J Shin, and T H Ji
February 1988, The Journal of biological chemistry,
J Shin, and T H Ji
January 1989, Pharmacology & therapeutics,
J Shin, and T H Ji
January 1987, Pharmacology & therapeutics,
J Shin, and T H Ji
July 1993, European journal of pharmacology,
J Shin, and T H Ji
May 1986, The Journal of biological chemistry,
J Shin, and T H Ji
August 1988, Sheng li xue bao : [Acta physiologica Sinica],
J Shin, and T H Ji
November 1981, The Journal of biological chemistry,
J Shin, and T H Ji
January 1978, The Journal of membrane biology,
J Shin, and T H Ji
January 2017, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!