High dose rate intraluminal irradiation in recurrent endobronchial carcinoma. 1985

S L Seagren, and J H Harrell, and R A Horn

Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D009364 Neoplasm Recurrence, Local The local recurrence of a neoplasm following treatment. It arises from microscopic cells of the original neoplasm that have escaped therapeutic intervention and later become clinically visible at the original site. Local Neoplasm Recurrence,Local Neoplasm Recurrences,Locoregional Neoplasm Recurrence,Neoplasm Recurrence, Locoregional,Neoplasm Recurrences, Local,Recurrence, Local Neoplasm,Recurrence, Locoregional Neoplasm,Recurrences, Local Neoplasm,Locoregional Neoplasm Recurrences,Neoplasm Recurrences, Locoregional,Recurrences, Locoregional Neoplasm
D010166 Palliative Care Care alleviating symptoms without curing the underlying disease. (Stedman, 25th ed) Palliative Treatment,Palliative Supportive Care,Palliative Surgery,Palliative Therapy,Surgery, Palliative,Therapy, Palliative,Care, Palliative,Palliative Treatments,Supportive Care, Palliative,Treatment, Palliative,Treatments, Palliative
D001918 Brachytherapy A collective term for interstitial, intracavity, and surface radiotherapy. It uses small sealed or partly-sealed sources that may be placed on or near the body surface or within a natural body cavity or implanted directly into the tissues. Curietherapy,Implant Radiotherapy,Plaque Therapy, Radioisotope,Radioisotope Brachytherapy,Radiotherapy, Interstitial,Radiotherapy, Intracavity,Radiotherapy, Surface,Brachytherapy, Radioisotope,Interstitial Radiotherapy,Intracavity Radiotherapy,Radioisotope Plaque Therapy,Radiotherapy, Implant,Surface Radiotherapy,Therapy, Radioisotope Plaque
D002283 Carcinoma, Bronchogenic Malignant neoplasm arising from the epithelium of the BRONCHI. It represents a large group of epithelial lung malignancies which can be divided into two clinical groups: SMALL CELL LUNG CANCER and NON-SMALL-CELL LUNG CARCINOMA. Carcinoma, Bronchial,Bronchial Carcinoma,Bronchial Carcinomas,Bronchogenic Carcinoma,Bronchogenic Carcinomas,Carcinomas, Bronchial,Carcinomas, Bronchogenic
D003037 Cobalt Radioisotopes Unstable isotopes of cobalt that decay or disintegrate emitting radiation. Co atoms with atomic weights of 54-64, except 59, are radioactive cobalt isotopes. Radioisotopes, Cobalt
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D053685 Laser Therapy The use of photothermal effects of LASERS to coagulate, incise, vaporize, resect, dissect, or resurface tissue. Laser Knife,Laser Scalpel,Surgery, Laser,Vaporization, Laser,Laser Ablation,Laser Knives,Laser Photoablation of Tissue,Laser Surgery,Laser Tissue Ablation,Nonablative Laser Treatment,Pulsed Laser Tissue Ablation,Ablation, Laser,Ablation, Laser Tissue,Knife, Laser,Knifes, Laser,Knive, Laser,Knives, Laser,Laser Knifes,Laser Knive,Laser Scalpels,Laser Surgeries,Laser Therapies,Laser Treatment, Nonablative,Laser Treatments, Nonablative,Laser Vaporization,Nonablative Laser Treatments,Scalpel, Laser,Scalpels, Laser,Surgeries, Laser,Therapies, Laser,Therapy, Laser,Tissue Ablation, Laser

Related Publications

S L Seagren, and J H Harrell, and R A Horn
January 1992, International journal of radiation oncology, biology, physics,
S L Seagren, and J H Harrell, and R A Horn
October 1993, Chest,
S L Seagren, and J H Harrell, and R A Horn
September 2003, Journal of the College of Physicians and Surgeons--Pakistan : JCPSP,
S L Seagren, and J H Harrell, and R A Horn
January 1991, Radiation medicine,
S L Seagren, and J H Harrell, and R A Horn
July 2012, Radiation oncology (London, England),
S L Seagren, and J H Harrell, and R A Horn
June 1995, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
S L Seagren, and J H Harrell, and R A Horn
June 1992, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
S L Seagren, and J H Harrell, and R A Horn
September 1993, Chest,
S L Seagren, and J H Harrell, and R A Horn
May 1991, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
Copied contents to your clipboard!