RNA polymerase I structure and transcription regulation. 2013

Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany.

Transcription of ribosomal RNA by RNA polymerase (Pol) I initiates ribosome biogenesis and regulates eukaryotic cell growth. The crystal structure of Pol I from the yeast Saccharomyces cerevisiae at 2.8 Å resolution reveals all 14 subunits of the 590-kilodalton enzyme, and shows differences to Pol II. An 'expander' element occupies the DNA template site and stabilizes an expanded active centre cleft with an unwound bridge helix. A 'connector' element invades the cleft of an adjacent polymerase and stabilizes an inactive polymerase dimer. The connector and expander must detach during Pol I activation to enable transcription initiation and cleft contraction by convergent movement of the polymerase 'core' and 'shelf' modules. Conversion between an inactive expanded and an active contracted polymerase state may generally underlie transcription. Regulatory factors can modulate the core-shelf interface that includes a 'composite' active site for RNA chain initiation, elongation, proofreading and termination.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D012318 RNA Polymerase I A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. The enzyme functions in the nucleolar structure and transcribes DNA into RNA. It has different requirements for cations and salts than RNA polymerase II and III and is not inhibited by alpha-amanitin. DNA-Dependent RNA Polymerase I,RNA Polymerase A,DNA Dependent RNA Polymerase I,Polymerase A, RNA,Polymerase I, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D055503 Protein Multimerization The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies
D019473 Transcription Factors, TFII The so-called general transcription factors that bind to RNA POLYMERASE II and that are required to initiate transcription. They include TFIIA; TFIIB; TFIID; TFIIE; TFIIF; TFIIH; TFII-I; and TFIIJ. In vivo they apparently bind in an ordered multi-step process and/or may form a large preinitiation complex called RNA polymerase II holoenzyme. TFII Transcription Factors
D020134 Catalytic Domain The region of an enzyme that interacts with its substrate to cause the enzymatic reaction. Active Site,Catalytic Core,Catalytic Region,Catalytic Site,Catalytic Subunit,Reactive Site,Active Sites,Catalytic Cores,Catalytic Domains,Catalytic Regions,Catalytic Sites,Catalytic Subunits,Core, Catalytic,Cores, Catalytic,Domain, Catalytic,Domains, Catalytic,Reactive Sites,Region, Catalytic,Regions, Catalytic,Site, Active,Site, Catalytic,Site, Reactive,Sites, Active,Sites, Catalytic,Sites, Reactive,Subunit, Catalytic,Subunits, Catalytic

Related Publications

Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
January 2005, Molekuliarnaia biologiia,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
January 1999, Progress in nucleic acid research and molecular biology,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
February 2011, Critical reviews in biochemistry and molecular biology,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
January 1999, Progress in nucleic acid research and molecular biology,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
June 2018, Annual review of biochemistry,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
March 1998, Frontiers in bioscience : a journal and virtual library,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
January 2021, Frontiers in molecular biosciences,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
January 1995, Progress in nucleic acid research and molecular biology,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
June 1993, Current opinion in cell biology,
Christoph Engel, and Sarah Sainsbury, and Alan C Cheung, and Dirk Kostrewa, and Patrick Cramer
January 2013, Biochimica et biophysica acta,
Copied contents to your clipboard!