Cytotoxic granules from killer cells: specificity of granules and insertion of channels of defined size into target membranes. 1985

M Criado, and J M Lindstrom, and C G Anderson, and G Dennert

The channel-forming polyperforins P1 and P2 are thought to be formed from the contents of dense core vesicles of cytolytic effector cells. To test this hypothesis, granules from various cytotoxic effector cells were assayed for cytolytic activity on nucleated or unnucleated targets. The results show that in general, granules from cytolytic effector cells are cytolytic, whereas granules from noncytotoxic cells are not. Cytotoxicity of granules is not specific, but there appears to be a preference in that nucleated targets are lysed better than are erythrocytes by granules from T killer or natural killer cells. Granules from CTLL-2, however, preferentially lyse erythrocyte targets. This cell line has been in culture for a long period of time and has lost its cytotoxicity. We tested whether granules from CTLL-2 caused formation of transmembrane pores in erythrocyte target membranes. We found that granule- and complement-induced lesions have similar pore sizes. They are big enough to allow the total release of alpha-bungarotoxin, an 8000 Mr polypeptide with dimensions of 4 X 2.5 nm. Larger molecules are released partially or not at all. Under acidic conditions (pH 5.4) granules do not permeabilize target membranes. This may suggest a pH-dependent control mechanism in the formation, insertion, or function of polyperforin channels, in addition to a previously recognized Ca2+-dependent mechanism. Permeabilization of lipid vesicles by granules was studied to explore what the molecular requirements for channel insertion into membranes may be. Release of alpha-bungarotoxin induced by granules was observed in liposomes made of soybean lipid with or without cholesterol, suggesting that no membrane component other than lipid is required for the insertion of polyperforins, and that the action of polyperforins does not require other mechanisms in the target cell. When pure lecithin from soybean and egg, or synthetic phosphatidylcholines were used, slower release or no release of macromolecules was observed. We suggest that some kind of lipid specificity is required for perforin action. This may be related to the hydrophobic region of the lipid bilayer rather than to the polar portion, because different lecithins with varying fatty acid composition gave similar results.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell

Related Publications

M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
May 2003, Journal of immunological methods,
M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
August 1988, Cancer research,
M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
November 1973, Cellular immunology,
M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
February 1989, Transplantation proceedings,
M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
December 1981, Journal of immunology (Baltimore, Md. : 1950),
M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
January 1985, Natural immunity and cell growth regulation,
M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
November 1985, The Journal of clinical investigation,
M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
November 2002, Biophysical journal,
M Criado, and J M Lindstrom, and C G Anderson, and G Dennert
March 2004, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!