Targeting sarcoplasmic reticulum calcium ATPase by gene therapy. 2013

Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
Cardiovascular Research Center, Icahn School of Medicine , New York, NY 10029.

Although pharmacologic therapies have provided gains in reducing the mortality of heart failure, the rising incidence of the disease requires new approaches to combat its health burden. Twenty-five years ago, abnormal calcium cycling was identified as a characteristic of failing human myocardium. Sarcoplasmic reticulum calcium ATPase (SERCA2a), the sarcoplasmic reticulum calcium pump, was found to be a key factor in the alteration of calcium cycling. With the advancement of gene vectors, SERCA2a emerged as an attractive clinical target for gene delivery purposes. Using adeno-associated virus constructs, SERCA2a upregulation has been found to improve myocardial function in animal models. The clinical benefits of overexpressing SERCA2a have been demonstrated in the phase I study Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID). This study has demonstrated that a persistent expression of the transgene SERCA2a is associated with a significant improvement in associated biochemical alterations and clinical symptoms of heart failure. In the coming years, additional targets will likely emerge that are amenable to genetic manipulations along with the development of more advanced vector systems with safer delivery approaches.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002986 Clinical Trials as Topic Works about pre-planned studies of the safety, efficacy, or optimum dosage schedule (if appropriate) of one or more diagnostic, therapeutic, or prophylactic drugs, devices, or techniques selected according to predetermined criteria of eligibility and observed for predefined evidence of favorable and unfavorable effects. This concept includes clinical trials conducted both in the U.S. and in other countries. Clinical Trial as Topic
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic
D015316 Genetic Therapy Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions. Gene Therapy,Somatic Gene Therapy,DNA Therapy,Gene Therapy, Somatic,Genetic Therapy, Gametic,Genetic Therapy, Somatic,Therapy, DNA,Therapy, Gene,Therapy, Somatic Gene,Gametic Genetic Therapies,Gametic Genetic Therapy,Genetic Therapies,Genetic Therapies, Gametic,Genetic Therapies, Somatic,Somatic Genetic Therapies,Somatic Genetic Therapy,Therapies, Gametic Genetic,Therapies, Genetic,Therapies, Somatic Genetic,Therapy, Gametic Genetic,Therapy, Genetic,Therapy, Somatic Genetic
D053498 Sarcoplasmic Reticulum Calcium-Transporting ATPases Calcium-transporting ATPases that catalyze the active transport of CALCIUM into the SARCOPLASMIC RETICULUM vesicles from the CYTOPLASM. They are primarily found in MUSCLE CELLS and play a role in the relaxation of MUSCLES. Calcium-Transporting ATPases, Sarcoplasmic Reticulum,Sarcoplasmic Reticulum Calcium ATPase,SERCA Calcium ATPase,SERCA1 Calcium ATPase,SERCA2 Calcium ATPase,SERCA2a Calcium ATPase,SERCA3 Calcium ATPase,SR Ca(2+)-ATPase 1,SR Ca(2+)-ATPase 2,SR Ca(2+)-ATPase 3,Sarco-Endoplasmic Reticulum Ca2+-ATPase,Sarcoplasmic Reticulum Ca(2+)-ATPase,Sarcoplasmic Reticulum Calcium-Transporting ATPase 1,Sarcoplasmic Reticulum Calcium-Transporting ATPase 2,Sarcoplasmic Reticulum Calcium-Transporting ATPase 2a,Sarcoplasmic Reticulum Calcium-Transporting ATPase 3,Sarcoplasmic-Endoplasmic Reticulum Calcium ATPase 2,Sarcoplasmic-Endoplasmic Reticulum Calcium ATPase 2a,Sarcoplasmic-Endoplasmic Reticulum Calcium ATPase 3,Sarcoplasmic-endoplasmic Reticulum Calcium ATPase 1,Ca2+-ATPase, Sarco-Endoplasmic Reticulum,Calcium Transporting ATPases, Sarcoplasmic Reticulum,Reticulum Ca2+-ATPase, Sarco-Endoplasmic,Sarco Endoplasmic Reticulum Ca2+ ATPase,Sarcoplasmic Endoplasmic Reticulum Calcium ATPase 2,Sarcoplasmic Endoplasmic Reticulum Calcium ATPase 2a,Sarcoplasmic Endoplasmic Reticulum Calcium ATPase 3,Sarcoplasmic Reticulum Calcium Transporting ATPase 1,Sarcoplasmic Reticulum Calcium Transporting ATPase 2,Sarcoplasmic Reticulum Calcium Transporting ATPase 2a,Sarcoplasmic Reticulum Calcium Transporting ATPase 3,Sarcoplasmic Reticulum Calcium Transporting ATPases,Sarcoplasmic endoplasmic Reticulum Calcium ATPase 1

Related Publications

Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
June 2012, Gene therapy,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
January 2007, Advances in experimental medicine and biology,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
August 1992, FEBS letters,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
January 2023, Frontiers in cardiovascular medicine,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
May 2006, Zhonghua yi xue za zhi,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
November 1983, Biophysical journal,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
January 2006, Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
July 1982, Proceedings of the National Academy of Sciences of the United States of America,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
August 1990, The Journal of biological chemistry,
Judith K Gwathmey, and Armen Yerevanian, and Roger J Hajjar
February 1986, The Journal of biological chemistry,
Copied contents to your clipboard!