Neonatal T-cell tolerance to minimal immunogenic peptides is caused by clonal inactivation. 1986

G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz

The mechanisms underlying T-lymphocyte tolerance induced in neonatal mice are still unknown. It is unclear whether the tolerant state is the result of inactivation of T cells on exposure to antigen during development or of active suppression by other T cells specific for the same antigen. To distinguish between these two hypotheses, we have analysed the specificity of tolerance to three cytochrome peptides which differ by only a single amino-acid substitution in the epitope recognized by proliferative T cells. The peptides stimulate proliferative responses which are highly specific with minimal cross-reactivity. As antigen-induced clonal inactivation would address the same cells normally activated by that antigen, the specificity of tolerance should exactly match that of the proliferative response to the antigen, and each cytochrome peptide should induce tolerance to itself alone. Conversely, as T-suppressor (Ts) and T-proliferative (Tp) cells almost invariably seem to recognize distinct, non-overlapping determinants on protein antigens, suppressor-mediated tolerance should not be affected by substitutions in the proliferative T-cell epitope. Tolerance would depend solely on the existence of a shared suppressor determinant, so each cytochrome peptide should induce cross-tolerance to the others. We found that the specificity of tolerance matched that of the proliferative response: each peptide induced tolerance for itself but the response to the variants was unaltered. This result strongly supports the hypothesis of clonal inactivation as an important mechanism in induction of neonatal tolerance.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D050378 T-Lymphocytes, Regulatory CD4-positive T cells that inhibit immunopathology or autoimmune disease in vivo. They inhibit the immune response by influencing the activity of other cell types. Regulatory T-cells include naturally occurring CD4+CD25+ cells, IL-10 secreting Tr1 cells, and Th3 cells. Regulatory T Cell,Regulatory T-Cell,Regulatory T-Lymphocyte,Regulatory T-Lymphocytes,Suppressor T-Lymphocytes, Naturally-Occurring,T-Cells, Regulatory,Th3 Cells,Tr1 Cell,Treg Cell,Regulatory T-Cells,Suppressor T-Cells, Naturally-Occurring,Tr1 Cells,Treg Cells,Cell, Regulatory T,Cell, Th3,Cell, Tr1,Cell, Treg,Cells, Regulatory T,Cells, Th3,Cells, Tr1,Cells, Treg,Naturally-Occurring Suppressor T-Cell,Naturally-Occurring Suppressor T-Cells,Naturally-Occurring Suppressor T-Lymphocyte,Naturally-Occurring Suppressor T-Lymphocytes,Regulatory T Cells,Regulatory T Lymphocyte,Regulatory T Lymphocytes,Suppressor T Cells, Naturally Occurring,Suppressor T Lymphocytes, Naturally Occurring,Suppressor T-Cell, Naturally-Occurring,Suppressor T-Lymphocyte, Naturally-Occurring,T Cell, Regulatory,T Cells, Regulatory,T Lymphocytes, Regulatory,T-Cell, Naturally-Occurring Suppressor,T-Cells, Naturally-Occurring Suppressor,T-Lymphocyte, Regulatory,Th3 Cell

Related Publications

G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
June 1990, Nature,
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
May 1996, Journal of immunology (Baltimore, Md. : 1950),
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
April 1987, Cell,
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
September 2005, Nature,
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
May 1993, Journal of immunology (Baltimore, Md. : 1950),
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
July 1995, The Journal of experimental medicine,
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
May 1988, Journal of immunology (Baltimore, Md. : 1950),
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
February 1983, Journal of immunology (Baltimore, Md. : 1950),
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
November 1974, Science (New York, N.Y.),
G Gammon, and K Dunn, and N Shastri, and A Oki, and S Wilbur, and E E Sercarz
September 1994, Transplant immunology,
Copied contents to your clipboard!