SMG1 regulates adipogenesis via targeting of staufen1-mediated mRNA decay. 2013

Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
Division of Life Sciences, Korea University, Seoul 136-701, Republic of Korea.

Suppressor of morphogenesis in genitalia 1 (SMG1), a member of the phosphatidylinositol 3-kinase-related kinase family, is involved in nonsense-mediated mRNA decay (NMD). SMG1 phosphorylates Upf1, a key NMD factor. Subsequently, hyperphosphorylated Upf1 associates with SMG5-7 or proline-rich nuclear receptor coregulatory protein (PNRC2) to elicit rapid mRNA degradation. Upf1 is also known to be involved in staufen 1 (Stau1)-mediated mRNA decay (SMD), which is closely related to NMD. However, the biological and molecular roles of SMG1 in SMD remain unknown. Here, we provide evidence that SMG1 is involved in SMD. The immunoprecipitation results show that SMG1 is complexed with Stau1, Upf1, and Dcp1a. Downregulation of SMG1 or overexpression of a kinase-inactive mutant of SMG1 inhibits SMD efficiency. In addition, downregulation of SMG1 inhibits rapid degradation elicited by artificially tethered Stau1 or Upf1 downstream of the normal termination codon. Furthermore, Stau1 and Upf1 colocalize in processing bodies in an SMG1-dependent manner. We also find that the level of SMG1 increases during adipogenesis. Accordingly, downregulation of SMG1 causes the reduction in the level of Upf1 phosphorylation and delays adipogenesis, suggesting the functional involvement of SMG1 in adipogenesis via SMD.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015534 Trans-Activators Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins. Nuclear Trans-Acting Factor,Trans-Acting Factors,Trans-Acting Factor,Trans-Activator,Transactivator,Transactivators,Factor, Nuclear Trans-Acting,Factor, Trans-Acting,Factors, Trans-Acting,Nuclear Trans Acting Factor,Trans Acting Factor,Trans Acting Factors,Trans Activator,Trans Activators,Trans-Acting Factor, Nuclear

Related Publications

Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
October 2013, Nature structural & molecular biology,
Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
January 2018, Nature communications,
Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
June 2014, Nucleic acids research,
Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
July 2010, Proceedings of the National Academy of Sciences of the United States of America,
Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
December 2013, The Plant journal : for cell and molecular biology,
Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
July 2016, BMC molecular biology,
Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
June 2019, Gene,
Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
May 2013, Biochemical and biophysical research communications,
Hana Cho, and Sisu Han, and Ok Hyun Park, and Yoon Ki Kim
June 2017, Nature structural & molecular biology,
Copied contents to your clipboard!