Tidal volume drives inflammation during mechanical ventilation for viral respiratory infection. 2014

Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
1Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands. 2Department of Pediatric Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands.

OBJECTIVE Respiratory syncytial virus lower respiratory tract infection is the most frequent cause of respiratory insufficiency necessitating mechanical ventilation in infants during the winter season. Recently, we presented a new animal model to show that mechanical ventilation aggravates respiratory syncytial virus-induced pulmonary inflammation by distinct mechanisms. We now use this model to study whether low tidal volume mechanical ventilation causes less ventilator-induced lung injury in the presence of respiratory syncytial virus lower respiratory tract infection. METHODS Randomized controlled experimental study. METHODS University Medical Center animal laboratory. METHODS Male BALB/c mice, 6-8 weeks old and weighing 20-28 g. METHODS Mice were inoculated with respiratory syncytial virus or mock virus on day 0 and ventilated on day 1 or 5 with high (12 mL/kg) or low (6 mL/kg) tidal volume for 5 hours. RESULTS Total and differential cell counts as well as cytokine concentrations were determined in bronchoalveolar lavage fluid. Compared with nonventilated respiratory syncytial virus-infected mice, high tidal volume ventilation of respiratory syncytial virus-infected mice on day 5 enhanced bronchoalveolar lavage fluid total cell count (0.35 vs 0.99 × 10e6/mL; p < 0.01), neutrophils (0.02 vs 0.17 × 10e6/mL; p < 0.01), interleukin-6 (58 vs 250 pg/mL; p < 0.01), and keratinocyte-derived chemokine (95 vs 335 pg/mL; p < 0.01) levels. In low tidal volume ventilation of respiratory syncytial virus-infected mice, no significant difference in cell counts or cytokine concentrations was observed compared with spontaneous breathing respiratory syncytial virus-infected controls on both days. CONCLUSIONS Low tidal volume mechanical ventilation causes less ventilation-induced cellular and cytokine influx into the bronchoalveolar space during respiratory syncytial virus lower respiratory tract infection.

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D001992 Bronchoalveolar Lavage Fluid Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung. Alveolar Lavage Fluid,Bronchial Lavage Fluid,Lung Lavage Fluid,Bronchial Alveolar Lavage Fluid,Lavage Fluid, Bronchial,Lavage Fluid, Lung,Pulmonary Lavage Fluid,Alveolar Lavage Fluids,Bronchial Lavage Fluids,Bronchoalveolar Lavage Fluids,Lavage Fluid, Alveolar,Lavage Fluid, Bronchoalveolar,Lavage Fluid, Pulmonary,Lavage Fluids, Alveolar,Lavage Fluids, Bronchial,Lavage Fluids, Bronchoalveolar,Lavage Fluids, Lung,Lavage Fluids, Pulmonary,Lung Lavage Fluids,Pulmonary Lavage Fluids
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013990 Tidal Volume The volume of air inspired or expired during each normal, quiet respiratory cycle. Common abbreviations are TV or V with subscript T. Tidal Volumes,Volume, Tidal,Volumes, Tidal

Related Publications

Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
November 1998, Critical care medicine,
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
January 2007, American journal of respiratory and critical care medicine,
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
January 2010, Critical care (London, England),
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
August 2012, Respiratory care,
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
August 1999, Pediatric pulmonology,
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
March 1988, Journal of applied physiology (Bethesda, Md. : 1985),
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
November 2016, Chronic respiratory disease,
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
January 2012, Critical care research and practice,
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
May 2001, Respiratory care,
Marije P Hennus, and Louis J Bont, and Nicolaas J Jansen, and Adrianus J van Vught
January 2001, Respiratory care,
Copied contents to your clipboard!