Fission yeast tropomyosin specifies directed transport of myosin-V along actin cables. 2014

Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405.

A hallmark of class-V myosins is their processivity--the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity.

UI MeSH Term Description Entries
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012568 Schizosaccharomyces A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales. Fission Yeast,Schizosaccharomyces malidevorans,Schizosaccharomyces pombe,Yeast, Fission,S pombe,Fission Yeasts
D054730 Protein Interaction Domains and Motifs Protein modules with conserved ligand-binding surfaces which mediate specific interaction functions in SIGNAL TRANSDUCTION PATHWAYS and the specific BINDING SITES of their cognate protein LIGANDS. Protein Interaction Domains,Protein Interaction Motifs,Binding Motifs, Protein Interaction,Protein Interaction Binding Motifs,Protein-Protein Interaction Domains,Domain, Protein Interaction,Domain, Protein-Protein Interaction,Domains, Protein Interaction,Domains, Protein-Protein Interaction,Motif, Protein Interaction,Motifs, Protein Interaction,Protein Interaction Domain,Protein Interaction Motif,Protein Protein Interaction Domains,Protein-Protein Interaction Domain
D059008 Time-Lapse Imaging Recording serial images of a process at regular intervals spaced out over a longer period of time than the time in which the recordings will be played back. Time-Lapsed Imaging,Imaging, Time-Lapse,Imaging, Time-Lapsed,Time Lapse Imaging,Time Lapsed Imaging
D018797 Cell Cycle Proteins Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS. Cell Division Cycle Proteins,Cell-Cycle Regulatory Proteins,cdc Proteins,Cell Cycle Regulatory Proteins
D029702 Schizosaccharomyces pombe Proteins Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Fission Yeast Proteins,S pombe Proteins

Related Publications

Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
December 2012, Molecular biology of the cell,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
July 2016, The Journal of cell biology,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
January 2014, Bioarchitecture,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
September 2005, Nature cell biology,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
October 2014, Current biology : CB,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
November 2004, Current biology : CB,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
November 2012, The Journal of cell biology,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
March 2002, Journal of cell science,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
January 2011, Molecular biology of the cell,
Joseph E Clayton, and Luther W Pollard, and Maria Sckolnick, and Carol S Bookwalter, and Alex R Hodges, and Kathleen M Trybus, and Matthew Lord
March 2010, Molecular biology of the cell,
Copied contents to your clipboard!