The effect of intraocular injection of tetrodotoxin on fast axonal transport of [3H]proline- and [3H]fucose-labeled materials in the developing rat optic nerve. 1985

R V Riccio, and M A Matthews

The fast axonal transport of [3H]proline-labeled proteins and [3H]fucose-labeled glycoproteins delivered to the dorsal lateral geniculate nucleus in the developing rat optic nerve was investigated during tetrodotoxin-induced monocular impulse blockade. Repeated intraocular injections of various dosages of tetrodotoxin or citrate buffer vehicle were made every two days in rats aged 5-21 days postnatal, and the accumulation of rapidly transported radioactivity in the lateral geniculate nucleus measured between three and twelve hours post-injection at each age. The effectiveness of prolonged tetrodotoxin treatment was monitored by loss of the pupillary light reflex and the level of cytochrome oxidase activity in the contralateral superior colliculus and dorsal lateral geniculate nucleus. Numbers of optic axons proximal to the chiasm and the frequency of retinal ganglion cells per unit distance from the optic disc were examined for signs of tetrodotoxin-induced degeneration of the retinofugal pathway. Tetrodotoxin-treatment reduced the amount of fucosyl glycoproteins, but not proline-labeled proteins, axonally transported to the lateral geniculate nucleus during the first three weeks of postnatal development. Other studies indicated that tetrodotoxin significantly reduced the incorporation of [3H]fucose into retinal proteins indicating that the reduction in transport was probably due to a decrease in precursor incorporation into retinal ganglion cells. Electron microscopy of ganglion cells at 21 days revealed dilated and vacuolated Golgi cisternae associated with tetrodotoxin treatment, suggesting that tetrodotoxin may alter fucose metabolism by secondarily disrupting Golgi organization. Other protein synthetic machinery in these cells, including ribosomes and rough endoplasmic reticulum, appeared normal throughout tetrodotoxin treatment. These data indicate that Na+-dependent optic impulse activity may be indirectly related to the axonal transport of glycoproteins during early postnatal development by mediating the incorporation of precursor into glycoproteins at the Golgi apparatus and their subsequent entrance into the fast transport system.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D005643 Fucose A six-member ring deoxysugar with the chemical formula C6H12O5. It lacks a hydroxyl group on the carbon at position 6 of the molecule. Deoxygalactose,alpha-Fucose,alpha Fucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R V Riccio, and M A Matthews
September 1992, Experimental neurology,
R V Riccio, and M A Matthews
August 1980, Journal of neurochemistry,
R V Riccio, and M A Matthews
February 1977, Brain research,
R V Riccio, and M A Matthews
March 1979, Archives of ophthalmology (Chicago, Ill. : 1960),
Copied contents to your clipboard!