Evidence for bursting pacemaker neurones in cultured spinal cord cells. 1985

P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent

Intracellular recordings were made from dissociated mouse spinal cord cells in primary culture. One type of spinal cord neurone, with a large cell body (40-50 micron), 3-5 short neurites, and a mean resting potential of -65 mV, was found to fire rhythmic bursts of action potentials with a phase duration of approximately 1s when the membrane potential was depolarized to -55 mV. These bursts did not arise from spontaneous synaptic input, but appeared to result from endogenous ionic conductance properties of the membrane resembling those observed in molluscan bursting pacemaker neurones. Ionic conductances underlying this bursting activity were studied pharmacologically by local application of ionic conductance blockers. Pacemaker potentials depended on Na+ conductance, since tetrodotoxin and Na-free medium were the most potent agents for blocking spontaneous rhythmic activity. However, a Ca2+ conductance was involved in the depolarizing phase of membrane potential oscillations, since Ba2+ application increased oscillation amplitude. Action potentials observed during the bursts were Na+- and Ca2+-dependent. They did not differ significantly from those observed in other spinal cord neurones in culture. Application of tetraethylammonium, CoCl2, BaCl2 and 4-aminopyridine revealed at least three different potassium conductances which controlled this bursting pacemaker activity. A delayed potassium conductance controlled spike duration, a Ca-dependent potassium conductance controlled the duration of the burst and underlay the hyperpolarizing phase terminating the burst, and finally, a transient potassium conductance appeared to be involved in the control of phase duration. The demonstration that spinal cord neurones growing in monolayer culture display typical bursting pacemaker activity raises the possibility that bursting pacemaker neurones in the mammalian spinal cord may be involved in a phasic pattern generator that could control such activities as walking and the respiratory rhythm.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
February 1975, Nature,
P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
November 1972, Nature: New biology,
P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
July 1981, Neuroscience letters,
P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
November 1987, The Journal of physiology,
P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
January 1986, Nature,
P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
January 2000, Molecular membrane biology,
P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
November 1985, Brain research,
P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
December 1983, Neuroscience letters,
P Legendre, and J S McKenzie, and B Dupouy, and J D Vincent
April 1993, Cell calcium,
Copied contents to your clipboard!