Receptor-dependent hydrolysis of cholesteryl esters contained in plasma low density lipoprotein. 1975

M S Brown, and S E Dana, and J L Goldstein

Selective radioactive labeling of the cholesteryl esters contained within human plasma low density lipoprotein has allowed the study of the metabolism of these molecules in monolayers and extracts of cultured human fibroblasts. In monolayers of normal cells, binding of low density lipoprotein to its cell surface receptor was followed by rapid hydrolysis of the [3H]cholesteryl linoleate contained within the lipoprotein and accumulation of the liberated [3H]cholesterol within the cell. The stoichiometry of the degradative process suggested that the protein and cholesteryl ester components of the lipoprotein were hydrolyzed in parallel. Incubation of intact fibroblasts with chloroquine, a known inhibitor of lysosomal degradative processes, inhibited the hydrolysis of the lipoprotein-bound cholesteryl esters. Fibroblasts from subjects with the homozygous form of familial hypercholesterolemia, which lack functional low density lipoprotein receptors and thus are unable to take up this lipoprotein when it is present in the culture medium at low concentrations, were therefore unable to hydrolyze the lipoprotein-bound [3H]cholesteryl linoleate. However, cell-free extracts from these mutant cells were capable of hydrolyzing the lipoprotein-bound [3H]cholesteryl linoleate at the same rapid rate as normal cells when incubated at acid pH. These data illustrate the essential role of the low density lipoprotein receptor and of lysosomal acid hydrolases in the metabolic utilization of low density lipoproteins by cultured human fibroblasts.

UI MeSH Term Description Entries
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008297 Male Males
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children

Related Publications

M S Brown, and S E Dana, and J L Goldstein
March 1982, Biochemical and biophysical research communications,
M S Brown, and S E Dana, and J L Goldstein
March 1992, The Journal of biological chemistry,
M S Brown, and S E Dana, and J L Goldstein
September 1968, Journal of lipid research,
M S Brown, and S E Dana, and J L Goldstein
August 1989, Proceedings of the National Academy of Sciences of the United States of America,
M S Brown, and S E Dana, and J L Goldstein
October 1973, Clinical science and molecular medicine,
M S Brown, and S E Dana, and J L Goldstein
December 1980, Journal of steroid biochemistry,
M S Brown, and S E Dana, and J L Goldstein
April 1985, Journal of lipid research,
Copied contents to your clipboard!