Role of ribosome degradation in the death of starved Escherichia coli cells. 1986

B D Davis, and S M Luger, and P C Tai

In Escherichia coli cultures limited for phosphate, the number of ribosomal particles was reduced to a small percentage of its earlier peak value by the time the viable cell count began to drop; the 30S subunits decreased more than the 50S subunits. Moreover, the ribosomal activity was reduced even more: these cells no longer synthesized protein, and their extracts could not translate phage RNA unless ribosomes were added. The translation initiation factors also disappeared, suggesting that they become less stable when released from their normal attachment to 30S subunits. In contrast, elongation factors, aminoacyl-tRNA synthetases, and tRNA persisted. During further incubation, until viability was reduced to 10(-5), the ribosomal particles disappeared altogether, while tRNA continued to be preserved. These results suggest that an excessive loss of ribosomes (and of initiation factors) may be a major cause of cell death during prolonged phosphate starvation.

UI MeSH Term Description Entries
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012259 Ribonuclease, Pancreatic An enzyme that catalyzes the endonucleolytic cleavage of pancreatic ribonucleic acids to 3'-phosphomono- and oligonucleotides ending in cytidylic or uridylic acids with 2',3'-cyclic phosphate intermediates. EC 3.1.27.5. RNase A,Ribonuclease A,Pancreatic RNase,RNase I,Ribonuclease (Pancreatic),Ribonuclease I,Pancreatic Ribonuclease,RNase, Pancreatic
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA

Related Publications

B D Davis, and S M Luger, and P C Tai
February 1976, The Journal of biological chemistry,
B D Davis, and S M Luger, and P C Tai
November 2018, Nucleic acids research,
B D Davis, and S M Luger, and P C Tai
September 2004, Journal of molecular biology,
B D Davis, and S M Luger, and P C Tai
March 1984, Journal of bacteriology,
B D Davis, and S M Luger, and P C Tai
May 2009, RNA (New York, N.Y.),
Copied contents to your clipboard!