Erythroid and megakaryocytic differentiation of K562 erythroleukemic cells by monochloramine. 2014

T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
Department of Nursing Science, Faculty of Health and Welfare, Okayama Prefectural University , Soja , Japan.

The induction of leukemic cell differentiation is a hopeful therapeutic modality. We studied the effects of monochloramine (NH2Cl) on erythroleukemic K562 cell differentiation, and compared the effects observed with those of U0126 and staurosporine, which are known inducers of erythroid and megakaryocytic differentiation, respectively. CD235 (glycophorin) expression, a marker of erythroid differentiation, was significantly increased by NH2Cl and U0126, along with an increase in cd235 mRNA levels. Other erythroid markers such as γ-globin and CD71 (transferrin receptor) were also increased by NH2Cl and U0126. In contrast, CD61 (integrin β3) and CD42b (GP1bα) expression, markers of megakaryocytic differentiation, was increased by staurosporine, but did not change significantly by NH2Cl and U0126. NH2Cl retarded cell proliferation without a marked loss of viability. When ERK phosphorylation (T202/Y204) and CD235 expression were compared using various chemicals, a strong negative correlation was observed (r = -0.76). Paradoxically, NH2Cl and staurosporine, but not U0126, induced large cells with multiple or lobulated nuclei, which was characteristic to megakaryocytes. NH2Cl increased the mRNA levels of gata1 and scl, decreased that of gata2, and did not change those of pu.1 and klf1. The changes observed in mRNA expression were different from those of U0126 or staurosporine. These results suggest that NH2Cl induces the bidirectional differentiation of K562. Oxidative stress may be effective in inducing leukemic cell differentiation.

UI MeSH Term Description Entries
D008533 Megakaryocytes Very large BONE MARROW CELLS which release mature BLOOD PLATELETS. Megakaryocyte
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002070 Butadienes Four carbon unsaturated hydrocarbons containing two double bonds. Butadiene Derivative,Butadiene Derivatives,Derivative, Butadiene,Derivatives, Butadiene
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002700 Chloramines Inorganic derivatives of ammonia by substitution of one or more hydrogen atoms with chlorine atoms or organic compounds with the general formulas R2NCl and RNCl2 (where R is an organic group). Chloroamines
D004915 Leukemia, Erythroblastic, Acute A myeloproliferative disorder characterized by neoplastic proliferation of erythroblastic and myeloblastic elements with atypical erythroblasts and myeloblasts in the peripheral blood. Di Guglielmo's Disease,Erythremic Myelosis,Erythroblastic Leukemia, Acute,Erythroleukemia,Leukemia, Myeloid, Acute, M6,Myeloid Leukemia, Acute, M6,Di Guglielmo Disease,Acute Erythroblastic Leukemia,Acute Erythroblastic Leukemias,Di Guglielmos Disease,Disease, Di Guglielmo,Disease, Di Guglielmo's,Erythremic Myeloses,Erythroblastic Leukemias, Acute,Erythroleukemias,Leukemia, Acute Erythroblastic,Leukemias, Acute Erythroblastic,Myeloses, Erythremic,Myelosis, Erythremic
D006021 Glycophorins The major sialoglycoprotein of human erythrocyte membranes. It consists of at least two sialoglycopeptides and is composed of 60% carbohydrate including sialic acid and 40% protein. It is involved in a number of different biological activities including the binding of MN blood groups, influenza viruses, kidney bean phytohemagglutinin, and wheat germ agglutinin. Erythrocyte Sialoglycoproteins,Glycoconnectin,Glycoconnectins,Glycophorin,Glycophorin D,MN Sialoglycoprotein,Red Blood Cell Membrane Sialoglycoprotein,Glycophorin A,Glycophorin A(M),Glycophorin B,Glycophorin C,Glycophorin E,Glycophorin HA,Ss Erythrocyte Membrane Sialoglycoproteins,Ss Sialoglycoprotein,beta-Sialoglycoprotein,Sialoglycoprotein, MN,Sialoglycoprotein, Ss,Sialoglycoproteins, Erythrocyte,beta Sialoglycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D048049 Extracellular Signal-Regulated MAP Kinases A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS. ERK MAP Kinase,ERK MAP Kinases,Extracellular Signal-Regulated Kinase,Extracellular Signal-Regulated Kinases,Extracellular Signal-Regulated MAP Kinase,MAP Kinases, Extracellular Signal-Regulated,Extracellular Signal Regulated Kinase,Extracellular Signal Regulated Kinases,Extracellular Signal Regulated MAP Kinase,Extracellular Signal Regulated MAP Kinases,Kinase, ERK MAP,Kinase, Extracellular Signal-Regulated,Kinases, Extracellular Signal-Regulated,MAP Kinase, ERK,MAP Kinases, Extracellular Signal Regulated,Signal-Regulated Kinase, Extracellular

Related Publications

T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
June 2000, The Journal of biological chemistry,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
January 2014, PloS one,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
January 2009, Journal of cellular and molecular medicine,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
August 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
April 1998, Archives of biochemistry and biophysics,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
December 1995, Leukemia research,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
March 1997, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
February 2009, European journal of medicinal chemistry,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
June 1994, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
T Ogino, and H Kobuchi, and H Fujita, and A Matsukawa, and K Utsumi
February 1995, Molecular and cellular biology,
Copied contents to your clipboard!