TopBP1 controls BLM protein level to maintain genome stability. 2013

Jiadong Wang, and Junjie Chen, and Zihua Gong
Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Human TopBP1 is a key mediator protein involved in DNA replication checkpoint control. In this study, we report a specific interaction between TopBP1 and Bloom syndrome helicase (BLM) that is phosphorylation and cell-cycle dependent. Interestingly, TopBP1 depletion led to decreased BLM protein level and increased sister chromatid exchange (SCE). Moreover, our data indicated that BLM was ubiquitinated by E3 ligase MIB1 and degraded in G1 cells but was stabilized by TopBP1 in S phase cells. Depletion of MIB1 restored BLM protein level and rescued the elevated SCE phenotype in TopBP1-depleted cells. In addition, cells expressing an undegradable BLM mutant showed radiation sensitivity, probably by triggering end resection and inhibiting the nonhomologous end-joining (NHEJ) pathway in G1 phase. Altogether, these data suggest that, although BLM is downregulated in G1 phase in order to promote NHEJ-mediated DNA repair, it is stabilized by TopBP1 in S phase cells in order to suppress SCE and thereby prevent genomic instability.

UI MeSH Term Description Entries
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012854 Sister Chromatid Exchange An exchange of segments between the sister chromatids of a chromosome, either between the sister chromatids of a meiotic tetrad or between the sister chromatids of a duplicated somatic chromosome. Its frequency is increased by ultraviolet and ionizing radiation and other mutagenic agents and is particularly high in BLOOM SYNDROME. Chromatid Exchange, Sister,Chromatid Exchanges, Sister,Exchange, Sister Chromatid,Exchanges, Sister Chromatid,Sister Chromatid Exchanges
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D016193 G1 Phase The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors. First Gap Phase,G1a Phase,G1b Phase,Gap Phase 1,First Gap Phases,G1 Phases,G1a Phases,G1b Phases,Gap Phase, First,Gap Phases, First,Phase 1, Gap,Phase, First Gap,Phase, G1,Phase, G1a,Phase, G1b,Phases, First Gap,Phases, G1,Phases, G1a,Phases, G1b

Related Publications

Jiadong Wang, and Junjie Chen, and Zihua Gong
March 2015, Molecular cell,
Jiadong Wang, and Junjie Chen, and Zihua Gong
May 2019, Molecular cell,
Jiadong Wang, and Junjie Chen, and Zihua Gong
January 2010, Sub-cellular biochemistry,
Jiadong Wang, and Junjie Chen, and Zihua Gong
October 2009, EMBO reports,
Jiadong Wang, and Junjie Chen, and Zihua Gong
October 2017, Structure (London, England : 1993),
Jiadong Wang, and Junjie Chen, and Zihua Gong
October 2018, Critical reviews in biochemistry and molecular biology,
Jiadong Wang, and Junjie Chen, and Zihua Gong
November 2020, Nucleic acids research,
Jiadong Wang, and Junjie Chen, and Zihua Gong
February 2021, Nucleic acids research,
Jiadong Wang, and Junjie Chen, and Zihua Gong
November 2023, Nucleic acids research,
Jiadong Wang, and Junjie Chen, and Zihua Gong
November 2021, Plants (Basel, Switzerland),
Copied contents to your clipboard!