The contribution of Na and K ions to the pacemaker current in sheep cardiac Purkinje fibres. 1986

H G Glitsch, and H Pusch, and F Verdonck

The ionic components of the pacemaker current are quantitatively analysed in sheep cardiac Purkinje fibres by simultaneous measurements of the intracellular Na activity (alpha iNa) and the membrane current under voltage clamp. The pacemaker current is operationally defined as the Cs inhibited membrane current (ICs) in Ba containing media at clamp potentials negative to -60 mV. At these potentials solutions containing CsCl (0.2-5 mM) shift the holding membrane current into the outward direction and simultaneously decrease alpha iNa. The Cs effects on membrane current and alpha iNa display a similar voltage dependence. A Cs inhibited Na influx contributes to ICs. The ratio ICs/(Cs inhibited Na influx in electrical units) is less than 1 at membrane potentials positive to the potassium equilibrium potential EK and greater than 1 at potentials negative to EK. The ratio is close to 1 at EK suggesting Na ions to be the only carriers of the current at EK whereas K ions contribute to ICs at potentials different from EK. The effects of Cs on the Cs inhibited Na influx and ICs show a very similar dose dependence. The effect is half maximum at approximately 0.2 mM CsCl (in 21.6 mM K; clamp potential: -85 mV). An increase of the external K concentration augments ICs and the Cs inhibited Ca influx. Na and K ions carrying ICs probably cross the membrane via an identical channel. The permeability of the channel for K+ is about 10-20 times larger than for Na+. The ICs reversal potential of a fibre bathed in a medium containing 5.4 mM K is estimated to be -50 to -60 mV.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H G Glitsch, and H Pusch, and F Verdonck
April 1992, Cardiovascular research,
H G Glitsch, and H Pusch, and F Verdonck
May 1989, Pflugers Archiv : European journal of physiology,
H G Glitsch, and H Pusch, and F Verdonck
October 1988, The Journal of physiology,
H G Glitsch, and H Pusch, and F Verdonck
September 1976, Nature,
H G Glitsch, and H Pusch, and F Verdonck
December 1989, Naunyn-Schmiedeberg's archives of pharmacology,
H G Glitsch, and H Pusch, and F Verdonck
October 1995, Journal of biomedical science,
H G Glitsch, and H Pusch, and F Verdonck
December 1994, Naunyn-Schmiedeberg's archives of pharmacology,
H G Glitsch, and H Pusch, and F Verdonck
December 1989, Pflugers Archiv : European journal of physiology,
H G Glitsch, and H Pusch, and F Verdonck
December 1991, Naunyn-Schmiedeberg's archives of pharmacology,
H G Glitsch, and H Pusch, and F Verdonck
October 1990, European journal of pharmacology,
Copied contents to your clipboard!