Transcriptional regulation of plasma protein synthesis during inflammation. 1986

H E Birch, and G Schreiber

The regulation of the synthesis of plasma proteins in rat liver during the acute phase response was studied by measuring gene transcription activities in a cell-free nuclear transcription system. The transcription activities for the genes of major acute phase alpha 1-protein, the beta-chain of fibrinogen, transferrin, alpha 1-acid glycoprotein, and alpha 2-macroglobulin increased, reaching a maximum level between 18 and 36 h after inducing an acute inflammation. The transcription activities for the genes of alpha 2u-globulin, albumin, and transthyretin (formerly called prealbumin) decreased, reaching a minimum level after 12 to 24 h. The extent of the relative changes in transcription activities was similar to that of the relative changes in mRNA levels for major acute phase alpha 1-protein, the beta-chain of fibrinogen, transferrin, alpha 2u-globulin, albumin, and transthyretin. This is consistent with the assumption that the principal mechanism of the regulation of the synthesis of these proteins operates at the level of transcription. In contrast, the relative changes in transcription activities for alpha 1-acid glycoprotein and alpha 2-macroglobulin were far smaller than the changes of their mRNA levels, suggesting that, in addition to transcriptional changes, other mechanism(s) are involved in the regulation of the synthesis of these proteins.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009961 Orosomucoid Acid Seromucoid,Seromucoid,Serum Sialomucin,alpha 1-Acid Glycoprotein,alpha 1-Acid Seromucoid,A(1)-Acid Seromucoid,Acid alpha 1-Glycoprotein,Alpha(1)-Acid Glycoprotein,alpha 1-Acid Glycoprotein (Acute Phase),alpha 1-Glycoprotein Acid,Acid alpha 1 Glycoprotein,Glycoprotein, alpha 1-Acid,Seromucoid, Acid,Seromucoid, alpha 1-Acid,Sialomucin, Serum,alpha 1 Acid Glycoprotein,alpha 1 Acid Seromucoid,alpha 1 Glycoprotein Acid
D011915 Rats, Inbred BUF An inbred strain of rat that is used for cancer research, particularly the study of CARCINOGENESIS Rats, Inbred Buffalo,Rats, BUF,BUF Rat,BUF Rat, Inbred,BUF Rats,BUF Rats, Inbred,Buffalo Rats, Inbred,Inbred BUF Rat,Inbred BUF Rats,Inbred Buffalo Rats,Rat, BUF,Rat, Inbred BUF
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002097 C-Reactive Protein A plasma protein that circulates in increased amounts during inflammation and after tissue damage. C-Reactive Protein measured by more sensitive methods often for coronary heart disease risk assessment is referred to as High Sensitivity C-Reactive Protein (hs-CRP). High Sensitivity C-Reactive Protein,hs-CRP,hsCRP,C Reactive Protein,High Sensitivity C Reactive Protein
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D000511 alpha-Macroglobulins Glycoproteins with a molecular weight of approximately 620,000 to 680,000. Precipitation by electrophoresis is in the alpha region. They include alpha 1-macroglobulins and alpha 2-macroglobulins. These proteins exhibit trypsin-, chymotrypsin-, thrombin-, and plasmin-binding activity and function as hormonal transporters. Slow alpha 2-Macroglobulins,alpha 2-Acute Phase Globulins,alpha-Macrofetoproteins,45S RNP,Acute-Phase alpha 1-Protein,Slow alpha 2-Globulin,alpha 1-Acute Phase Globulin,alpha 1-Acute Phase Protein,alpha 1-Macroglobulin,alpha 2-Acute Phase Globulin,alpha-Macrofetoprotein,Acute Phase alpha 1 Protein,RNP, 45S,Slow alpha 2 Globulin,Slow alpha 2 Macroglobulins,alpha 1 Acute Phase Globulin,alpha 1 Acute Phase Protein,alpha 1 Macroglobulin,alpha 1-Protein, Acute-Phase,alpha 2 Acute Phase Globulin,alpha 2 Acute Phase Globulins,alpha 2-Globulin, Slow,alpha 2-Macroglobulins, Slow,alpha Macrofetoprotein,alpha Macrofetoproteins,alpha Macroglobulins

Related Publications

H E Birch, and G Schreiber
August 2007, American journal of physiology. Endocrinology and metabolism,
H E Birch, and G Schreiber
September 2008, Plant & cell physiology,
H E Birch, and G Schreiber
March 1989, Journal of applied physiology (Bethesda, Md. : 1985),
H E Birch, and G Schreiber
February 1994, Growth regulation,
H E Birch, and G Schreiber
April 2010, Journal of inflammation (London, England),
H E Birch, and G Schreiber
May 1988, The Journal of biological chemistry,
H E Birch, and G Schreiber
September 1982, The Journal of biological chemistry,
H E Birch, and G Schreiber
March 2020, Journal of leukocyte biology,
H E Birch, and G Schreiber
August 2014, Seminars in immunology,
Copied contents to your clipboard!