Destruction of autologous human lymphocytes by interleukin 2-activated cytotoxic cells. 1986

P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda

Human and murine lymphocyte populations differentiate into lymphokine activated killer (LAK) cells after in vitro or in vivo exposure to interleukin 2 (IL 2). LAK cells mediate destruction of neoplastic tissue in vitro and have been reported to spare normal tissue. However, systemic toxicity is observed in mice and patients receiving IL 2 infusions. Some aspects of this toxicity are similar to that seen in graft-vs-host disease, suggesting that IL 2 may cause an immune-mediated destruction of normal tissues. We have evaluated this issue by examining the destructive potential of fresh human lymphocytes cultured in media containing highly purified recombinant human IL 2. In the absence of any exogenous antigen or allogeneic stimulating cells, strong proliferative responses were induced after 6 days of exposure to IL 2. Lymphocytes harvested from these 6-day cultures were highly cytotoxic to K562 and Daudi target cells. These IL 2-activated cells were also cytotoxic against autologous and allogeneic normal lymphocyte target cells. This autologous lymphocyte destruction was detected in media containing autologous serum and was directly dependent on the concentration of IL 2 added to the cultures. These studies demonstrate that populations of IL 2-activated lymphocytes, containing LAK activity, can mediate low-level but significant destruction of normal lymphocytes in vitro.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007518 Isoantibodies Antibodies from an individual that react with ISOANTIGENS of another individual of the same species. Alloantibodies
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D003601 Cytotoxicity Tests, Immunologic The demonstration of the cytotoxic effect on a target cell of a lymphocyte, a mediator released by a sensitized lymphocyte, an antibody, or complement. AHG-CDC Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Tests,Microcytotoxicity Tests,Anti Human Globulin Complement Dependent Cytotoxicity Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunologic,Cytotoxicity Tests, Anti-Human Globulin Complement-Dependent,Cytotoxicity Tests, Immunological,Immunologic Cytotoxicity Test,Immunologic Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin-Augmented,Lymphocytotoxicity Tests, Antiglobulin-Augmented,Microcytotoxicity Test,AHG CDC Tests,AHG-CDC Test,Anti Human Globulin Complement Dependent Cytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunological,Cytotoxicity Tests, Anti Human Globulin Complement Dependent,Immunological Cytotoxicity Test,Immunological Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin Augmented,Lymphocytotoxicity Tests, Antiglobulin Augmented
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response

Related Publications

P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
January 1988, Journal of neuro-oncology,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
January 1986, Journal of neurosurgery,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
August 1970, Nature,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
October 1970, Experientia,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
January 1986, Symposium on Fundamental Cancer Research,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
January 1988, Acta haematologica,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
May 1988, Journal of immunological methods,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
December 1981, International journal of cancer,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
January 1971, Texas reports on biology and medicine,
P M Sondel, and J A Hank, and P C Kohler, and B P Chen, and D Z Minkoff, and J A Molenda
June 1991, British journal of haematology,
Copied contents to your clipboard!