Development and characterization of trinitrophenyl-specific L3T4+ T-cell clones. 1986

S Shimada, and R H Schwartz, and S I Katz

Two antigen-specific, L3T4+, Lyt-2- T-cell clones have been developed from (C57BL/6 x C3H/HeN) F1 mice epicutaneously sensitized to trinitrochlorobenzene. Genetic mapping and antibody blocking studies demonstrated that both of these clones have specificity for trinitrophenyl in association with Ek beta:Ek alpha or Eb beta:Ek alpha Ia molecules. One of the clones (D-8) also recognizes nonhaptenated cells expressing Es beta:Ek alpha. These clones should provide useful tools for the assessment of the signals required for triggering immune responses to haptenated self antigens.

UI MeSH Term Description Entries
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010853 Picryl Chloride A hapten that generates suppressor cells capable of down-regulating the efferent phase of trinitrophenol-specific contact hypersensitivity. (Arthritis Rheum 1991 Feb;34(2):180). 2,4,6-Trinitro-1-chlorobenzene,1-Chloro-2,4,6-trinitrobenzene,Trinitrochlorobenzene,Chloride, Picryl
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006241 Haptens Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response. Hapten,Contact-Sensitizing Agents,Agents, Contact-Sensitizing,Contact Sensitizing Agents
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

S Shimada, and R H Schwartz, and S I Katz
October 1987, The Journal of general virology,
S Shimada, and R H Schwartz, and S I Katz
April 1986, Proceedings of the National Academy of Sciences of the United States of America,
S Shimada, and R H Schwartz, and S I Katz
October 1989, Indian journal of experimental biology,
S Shimada, and R H Schwartz, and S I Katz
December 1992, Archives of oral biology,
S Shimada, and R H Schwartz, and S I Katz
April 1991, Scandinavian journal of immunology,
S Shimada, and R H Schwartz, and S I Katz
November 1986, European journal of immunology,
S Shimada, and R H Schwartz, and S I Katz
January 1995, Advances in experimental medicine and biology,
S Shimada, and R H Schwartz, and S I Katz
January 1996, Current topics in microbiology and immunology,
S Shimada, and R H Schwartz, and S I Katz
March 1998, International journal of cancer,
S Shimada, and R H Schwartz, and S I Katz
November 1986, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!